• Title/Summary/Keyword: Transient Monte Carlo

Search Result 41, Processing Time 0.033 seconds

Monte Carlo Simulation of Phonon Transport in One-Dimensional Transient Conduction and ESD Event (1 차원 과도 전도와 정전기 방전 현상에 관한 포논 전달의 몬테 카를로 모사)

  • Oh, Jang-Hyun;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2165-2170
    • /
    • 2007
  • At nanoscales, the Boltzmann transport equation (BTE) can best describe the behavior of phonons which are energy carriers in crystalline materials. Through this study, the phonon transport in some micro/nanoscale problems was simulated with the Monte Carlo method which is a kind of the stochastic approach to the BTE. In the Monte Carlo method, the superparticles of which the number is the weighted value to the actual number of phonons are allowed to drift and be scattered by other ones based on the scattering probability. Accounting for the phonon dispersion relation and polarizations, we have confirmed the one-dimensional transient phonon transport in ballistic and diffusion limits, respectively. The thermal conductivity for GaAs was also calculated from the kinetic theory by using the proposed model. Besides, we simulated the electrostatic discharge event in the NMOS transistor as a two-dimensional problem by applying the Monte Carlo method.

  • PDF

Dynamic Monte Carlo transient analysis for the Organization for Economic Co-operation and Development Nuclear Energy Agency (OECD/NEA) C5G7-TD benchmark

  • Shaukat, Nadeem;Ryu, Min;Shim, Hyung Jin
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.920-927
    • /
    • 2017
  • With ever-advancing computer technology, the Monte Carlo (MC) neutron transport calculation is expanding its application area to nuclear reactor transient analysis. Dynamic MC (DMC) neutron tracking for transient analysis requires efficient algorithms for delayed neutron generation, neutron population control, and initial condition modeling. In this paper, a new MC steady-state simulation method based on time-dependent MC neutron tracking is proposed for steady-state initial condition modeling; during this process, prompt neutron sources and delayed neutron precursors for the DMC transient simulation can easily be sampled. The DMC method, including the proposed time-dependent DMC steady-state simulation method, has been implemented in McCARD and applied for two-dimensional core kinetics problems in the time-dependent neutron transport benchmark C5G7-TD. The McCARD DMC calculation results show good agreement with results of a deterministic transport analysis code, nTRACER.

The Study of FACTS Impacts for Probabilistic Transient Stability

  • Kim Hyung-Chul;Kwon Sae-Hyuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.129-136
    • /
    • 2006
  • This paper proposes a probabilistic evaluation for the transient stability of electrical power systems incorporating FACTS devices. The uncertainties of the fault location and relay operation time play important keys in power system instability evaluation. The TCSC and SVC are employed for the reduction of system instability probability. This method is demonstrated by the WSCC test system and the results are compared with and without FACTS by means of Monte Carlo simulation.

Two Dimensional MOSFET Simulator using Mixed Particle Monte Carlo Method (Mixed Particle Monte Carlo 방법을 이용한 2차원 MOSFET 시뮬레이터)

  • 진교영;박영준;민홍식
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.5
    • /
    • pp.134-148
    • /
    • 1994
  • A full two-dimensional MOSFET simulator utilizing the Mixed Particle Monte Carlo method is introduced. Particle simulation for both electrons and holes are self-consistently coupled with Poisson 's equation. To demonstrate the performance of the simulator, steady state and transient state solutions of the terminal characteristics and the internal physical quantities are obtained for 0.25$\mu$m MOSFETs with three different structures` conventional single drain, LDD and GOLD MOSFET structures.

  • PDF

A study on the transient electron transport in GaAs bulk (GaAs 벌크에서 전자의 과도 전송 특성)

  • 임행삼;황의성;심재훈;이정일;홍순석
    • Electrical & Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.268-273
    • /
    • 1997
  • In this paper the transient electron transport in GaAs bulk is simulated by using ensemble Monte Carlo method. To analyze the transient electron transport the 10000 electrons in the .GAMMA. valley are simulated simultaneously for 10 picoseconds. The electric field-velocity relation is obtained. The high impurity density reduces the negative differential resistance effect. The result of transient average velocity shows the electron velocity in the transient state is faster than that in the steady state. This transient velocity overshoot is caused by the intervalley scattering mechanism. And we confirmed the fact that the energy relaxation time is longer than the momentum relaxation time.

  • PDF

Monte-Carlo Calculation of Single-Electron Inverter Transient Characteristics (몬테-칼로 방법을 이용한 단일전자인버터 회로의 과도특성 계산)

  • 정용익;유윤섭;황성우
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.326-329
    • /
    • 2000
  • In this paper, a complete methodology of incorporating the displacement current for the calculation of a single electron inverter characteristics has been devised. It has been implemented for the calculation of the low frequency noise spectrum in a single electron inverter in the framework of Monte-Carlo method. Our new methodology opens up a systematic way of analyzing transient behaviors of single electron circuits.

  • PDF

Transient Queueing Approximation for Modeling Computer Networks (컴퓨터 통신망의 모델링을 위한 비정상 상태에서의 큐잉 근사화)

  • Lee, Bong-Hwan
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.4
    • /
    • pp.15-23
    • /
    • 1995
  • In this paper, we evaluate the performance of a transient queueing approximation when it is applied to modeling computer communication networks. An operational computer network that uses the ISO IS-IS(Intermediate System-Intermediate System) routing protocol is modeled as a Jackson network. The primary goal of the approximation pursued in the study was to provide transient queue statistics comparable in accuracy to the results from conventional Monte Carlo simulations. A closure approximation of the M/M/1 queueing system was extended to the general Jackson network in order to obtain transient queue statistics. The performance of the approximation was compared to a discrete event simulation under nonstationary conditions. The transient results from the two simulations are compared on the basis of queue size and computer execution time. Under nonstationary conditions, the approximations for the mean and variance of the number of packets in the queue erer fairly close to the simulation values. The approximation offered substantial speed improvements over the discrete event simulation. The closure approximation provided a good alternative Monte Carlo simulation of the computer networks.

  • PDF

Advances for the time-dependent Monte Carlo neutron transport analysis in McCARD

  • Sang Hoon Jang;Hyung Jin Shim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2712-2722
    • /
    • 2023
  • For an accurate and efficient time-dependent Monte Carlo (TDMC) neutron transport analysis, several advanced methods are newly developed and implemented in the Seoul National University Monte Carlo code, McCARD. For an efficient control of the neutron population, a dynamic weight window method is devised to adjust the weight bounds of the implicit capture in the time bin-by-bin TDMC simulations. A moving geometry module is developed to model a continuous insertion or withdrawal of a control rod. Especially, the history-based batch method for the TDMC calculations is developed to predict the unbiased variance of a bin-wise mean estimate. The developed methods are verified for three-dimensional problems in the C5G7-TD benchmark, showing good agreements with results from a deterministic neutron transport analysis code, nTRACER, within the statistical uncertainty bounds. In addition, the TDMC analysis capability implemented in McCARD is demonstrated to search the optimum detector positions for the pulsed-neutron-source experiments in the Kyoto University Critical Assembly and AGN201K.

Development of transient Monte Carlo in a fissile system with β-delayed emission from individual precursors using modified open source code OpenMC(TD)

  • J. Romero-Barrientos;F. Molina;J.I. Marquez Damian;M. Zambra;P. Aguilera;F. Lopez-Usquiano;S. Parra
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1593-1603
    • /
    • 2023
  • In deterministic and Monte Carlo transport codes, b-delayed emission is included using a group structure where all of the precursors are grouped together in 6 groups or families, but given the increase in computational power, nowadays there is no reason to keep this structure. Furthermore, there have been recent efforts to compile and evaluate all the available b-delayed neutron emission data and to measure new and improved data on individual precursors. In order to be able to perform a transient Monte Carlo simulation, data from individual precursors needs to be implemented in a transport code. This work is the first step towards the development of a tool to explore the effect of individual precursors in a fissile system. In concrete, individual precursor data is included by expanding the capabilities of the open source Monte Carlo code OpenMC. In the modified code - named Time Dependent OpenMC or OpenMC(TD)- time dependency related to β-delayed neutron emission was handled by using forced decay of precursors and combing of the particle population. The data for continuous energy neutron cross-sections was taken from JEFF-3.1.1 library. Regarding the data needed to include the individual precursors, cumulative yields were taken from JEFF-3.1.1 and delayed neutron emission probabilities and delayed neutron spectra were taken from ENDF-B/VIII.0. OpenMC(TD) was tested in a monoenergetic system, an energy dependent unmoderated system where the precursors were taken individually or in a group structure, and in a light-water moderated energy dependent system, using 6-groups, 50 and 40 individual precursors. Neutron flux as a function of time was obtained for each of the systems studied. These results show the potential of OpenMC(TD) as a tool to study the impact of individual precursor data on fissile systems, thus motivating further research to simulate more complex fissile systems.