• Title/Summary/Keyword: Transient Heat Transfer Analysis

Search Result 234, Processing Time 0.026 seconds

Numerical Prediction of Aviation Fuel Temperatures in Unmanned Air Vehicles

  • Baek, Nak-Gon;Lim, Jin-Shik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.379-384
    • /
    • 2011
  • This paper performs numerical prediction of fuel temperature in the fuel tanks of unmanned air vehicles for both ground static non-operating and in flight transient conditions. The calculation is carried out using a modified Dufort-Frankel scheme. For this calculation, it is assumed that a non-operating vehicle on the ground is subjected to repeating daily cycles of ambient temperature with solar radiation and wind under 1%, with a 20% probability of hot day conditions. The energy conservation equation is used as the governing equation to calculate heat transfer between the fuel tank surface and the ambient environment. Results of the present analysis may be used as the estimated initial values of fuel temperatures in a vehicle's fuel tank for the purpose of analyzing transient fuel temperatures during various flight missions. This research also demonstrates that the fuel temperature of the front tank is higher than that of the rear tank, and that the difference between the two temperatures increases in the later phases of flight due to the consumption of fuel.

Faultproof Design in Space for Monopropellant Rocket Engine Assembly (단일추진제 로켓 엔진 어셈블리를 위한 우주 공간에서의 과실 방지 설계)

  • Han, Cho-Young;Kim, Jeong-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1377-1384
    • /
    • 2003
  • An analysis has been performed for active thermal control of the KOMPSAT monopropellant rocket engine assembly, i.e., dual thruster module(DTM). The main efforts of this work have been directed at determining proper heater sizes for propellant valves and catalyst beds necessary to maintain their temperatures within specified temperature ranges under KOMPSAT environment and operational conditions. The TAS incorporated with TRASYS thermal radiation analyzer was used to establish a complete heat transfer model which allows to predict the DTM temperature as a function of time. The thermal analysis has been performed in transient mode to verify the appropriate power for catalyst bed heaters necessary to increase catalyst bed temperature to the required value within a specified period of time. Similar analysis has been executed to validate the heater power for the thermostatically controlled primary and redundant heater circuits used to prevent hydrazine freezing, i.e., single fault. Moreover the effect of the radiative property of thermal control coating of heat shield was examined. Thruster firing condition was also simulated for the heat soakback condition. As a consequence, all thermal analysis results for DTM satisfactorily met the thermal requirements for the KOMPSAT DTM under the worst case average voltage, i.e. 25 volt.

A Study on the Anti-lcing Performance Evaluation and Design Guide for Weather-Tight Door of the Vessels Operating in Cold Region (빙해선박 풍우밀문의 결빙방지 성능평가 및 설계기준에 관한 연구)

  • Seo, Young-Kyo;Jung, Young-Jun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.6
    • /
    • pp.450-457
    • /
    • 2013
  • For the design guide of a vessel operating in cold region, numerical analysis was carried out to evaluate the weather-tight door which installed the heating cables by using ANSYS 13.0 Transient Thermal. The numerical analysis was performed by considering Advection-Diffusion equation. This study based on the experimental results of 'A study on Anti-Icing Technique for Weather-Tight Door of Ice-Strengthened Vessels'(Jeong, et al., 2011a) in KIOST. For validation of the numerical analysis results, the cold chamber experimental data measured by the heat sensors in certain location of the weather-tight door was used. The external environmental temperature which varies from $5^{\circ}C$ to $-55^{\circ}C$ was considered in numerical analysis. Also three different heating cables which have the heat capacity of 33W/m, 45W/m and 66W/m were adapted for the design parameters to be the most efficient and guidelines for anti-icing design of the weather tight door.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012 (설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwataik;Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Choi, Jong Min;Park, Jun-Seok;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.

An Analysis Finite Element for Element for Elasto-Plastic Thermal Stresses Considerating Strain Hysteresis at Quenching Process of Carbon Steel (I) - Analysis of temperature distribution - (탄소강의 담금질 처리과정에서 변형율이력을 고려한 탄소성열응력의 유한요소 해석(I) - 온도분포의 해석 -)

  • Kim, Ok-Sam;Cho, Eui-Il;Koo, Bon-Kwon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.3
    • /
    • pp.213-221
    • /
    • 1995
  • Temperature distribution, transformation and residual stresses generated during the quenching process of carbon steel. It follows many difficulties in the analytical considerations on those quenching process because of the coupling effects on temperature and metallic structures. In this paper one of the basic study on the quenching stresses was carried out for the case of the round steel bar specimen(SM45C) with 40mm both in its diameter and length. The temperature distributions considering strain hysteresis were numerically calculated by finite element technique. In calculating the transient temperature field, the heat flux between water and rod surface was determined from the heat transfer coefficient. The gradient of temperature is almost same to geometric of specimen. At early stage of the quenching process, the abrupt temperature gradient has been shown in the surface of the specimen.

  • PDF

Thermal Transient Response of a PWR Pressurizer Vessel Wall for the Inadvertent Auxiliary Spray Transient (PWR 가압기에서 오동작 보조살수 과도시 용기벽의 열적 과도응답)

  • Jo, Jong-Chull;Lee, Sang-Kyoon;Shin, Won-Ky;Cho, Jin-Ho
    • Nuclear Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.183-199
    • /
    • 1991
  • Transient response of temperature distributions in a Pressurized Water Reactor (PWR) pressurizer vessel wall for the Inadvertent Auxiliary Spray transient has been analyzed with conservatism accounted for the resulting thermal stresses in the regions of the vessel wall which are wetted by the spray water droplets. In order to determine the forced convective heat transfer coefficient at the inner boundary surface of vessel wall where the droplets impinge on and flow down, the transient temperatures of spray droplets when they reach the inner surface of the vessel wall after travelling from the spray nozzle through the pressurizer interior space occupied with the saturated steam-noncondensable hydrogen gas mixture have been predicted. The transient temperature distributions in the vessel wall have been obtained by using the finite element method, and the typical results have been provided. It has been shown that the results of thermal analysis are consistent with representation of the input transient and have plausible physical meaning.

  • PDF

A Numerical Model to Evaluate Fire-Resistant Capacity of the Reinforced Concrete Members (화재에 손상된 철근콘크리트 부재의 수치모델 및 내화성능해석)

  • Hwang, Jin-Wook;Ha, Sang-Hee;Lee, Yong-Hoon;Kim, Wha-Jung;Kwak, Hyo-Gyoung
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.497-508
    • /
    • 2013
  • This paper introduces a numerical model which can evaluate the fire-resistant capacity of reinforced concrete members. On the basis of the transient heat transfer considering the heat conduction, convection and radiation, time-dependent temperature distribution across a section is determined. A layered fiber section method is adopted to consider non-linear material properties depending on the temperature and varying with the position of a fiber. Furthermore, effects of non-mechanical strains of each fiber like thermal expansion, transient strain and creep strain are reflected on the non-linear structural analysis to take into account the extreme temperature variation induced by the fire. Analysis results by the numerical model are compared with experimental data from the standard fire tests to validate an exactness of the introduced numerical model. Also, time-dependent changes in the resisting capacities of reinforced concrete members exposed to fire are investigated through the analyses and, the resisting capacities evaluated are compared with those determined by the design code.

A Numerical Analysis in Piezoelectric Fan Systems (압전세라믹 냉각팬에 대한 수치해석적 연구)

  • Park, Ji-Ho;Kim, Eun-Pil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.994-1000
    • /
    • 2011
  • In this study, the piezoelectric fan cooling system is investigated. In order to find the proper geometry and configuration, the numerical model for the flow field and heat transfer investigation is used. A simplified nonlinear deformation model is employed for transient solutions of a piezoelectric fan with the dynamic mesh and user defined function capability. The results show that the cooling is most effective when the length of a piezoelectric fan is 5 cm and the cooling plate is 3 cm. The results can be used to develop a new design method of heat sink for piezoelectric fans.

Front Tracking Finite Element Analysis of Heat Transfer in Spray Forming Process (경계추적 유한요소법을 이용한 분무성형공정에서의 열전달 해석)

  • 장동훈;강신일
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.148-152
    • /
    • 1997
  • A numerical method is presented to predict and analyze the shape and the temperature history of a growing billet produced form the "spray forming" which is a fairly new near net-shape manufacturing process. It is important to understand the mechanism of billet growing and the cooling history of the spray deposited body, because one can obtain a billet with the desired final shape without secondary operations by accurate control of the billet shape and, moreover, growing velocity together with the cooling rate define the microstructure of the final formed product. In the present study, a theoretical model is first established to predict the shape of the billet and next the transient axisymmetric heat conduction problem with growing domain is solved using the so called "front tracking finite element technique".ent technique".uot;.

  • PDF

A Study on the Temperature Distribution of Welding Zone in Carbon Steel (탄소강재 용접부의 온도분포에 관한 연구)

  • 남궁재관;홍재학
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.3
    • /
    • pp.33-38
    • /
    • 1990
  • In this study, the transient temperature distribution of welded zone was analyzed by Finite Element Method for the optimal design of weldment. This study was carried out for the steel plate 8mm thick, 100mm wide, 100mm long that butt weld. The weld was made with a heat input of 2,250 joule/cm(arc current : 180 amperes ; arc voltage :25 volts ; and arc travel steed : 0.28 cm/sec). In the analysis of temperature, cooling in the welded zone by the conduction between materal was almost completed at 600 sec when a unique temperature field was formed. after this, the material was gradually cooled by the heat transfer to the circumference. In the early phase the temperature in base metal zone is little changed. but after the rise in temperature the whole area is cooled gradually.

  • PDF