• Title/Summary/Keyword: Transient Heat Flux Method

Search Result 41, Processing Time 0.029 seconds

A Study on the Analysis of Surface Heat Flux Using the Transient Heat Flux Method (비정상열유속 기법을 이용한 표면 열유속 해석에 관한 연구)

  • Yi, Jong-Ju
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.503-510
    • /
    • 2010
  • The quick variation of the canister wall temperature causes the modification of the shape of canister wall. This paper is the possibility of adoption and the error analysis about the transient heat flux method. The commercial code(Fluent Ver6.2.16) was employed for the calculation of surface temperature in the case of steady and unsteady heat flux condition. Based the surface temperature variation and surface material property, transient heat flux method can calculate the surface heat flux. In the case of steady heat flux condition, the error is about 2%, and in the case of unsteady heat flux condition, the error is about 3.6%. With the unsteady heat flux condition, the time which reach the maximum surface heat flux is almost same between the numerical analysis and transient heat flux method.

Transient Critical Heat Flux Under Flow Coastdown in a Vertical Annulus With Non-Uniform Heat Flux Distribution

  • Moon, Sang-Ki;Chun, Se-Young;Park, Ki-Yong;Baek, Won-Pil
    • Nuclear Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.382-395
    • /
    • 2002
  • An experimental study on transient critical heat flux (CHF) under flow coastdown has been performed for the water flow in a non-uniformly heated vertical annulus under low flow and a wide range of pressure conditions. The objectives of this study are to systematically investigate the effect of the flow transient on the CHF and to compare the transient CHF with steady-state CHF The transient CHF experiments have been performed for three kinds of flow transient modes based on the coastdown data of a nuclear power plant reactor coolant pump. At the same inlet subcooling, system pressure and heat flux, the effect of the initial mass flux on the critical mass flux can be negligible. However, the effect of the initial mass flux on the time-to- CHF becomes large as the heat flux decreases. The critical mass flux has the largest value for slow flow reduction rate. There is a pressure effect on the ratio of the transient CHF data to steady-state CHF data. Except under low system pressure conditions, the flow transient CHF was revealed to be conservative compared with the steady-state CHF data. Bowling CHF correlation and thermal hydraulic system code MARS show promising results for the prediction of CHF occurrence .

Measurement of Heat Flux in Rocket Combustors Using Plug-Type Heat Flux Gauges

  • Kim, Min Seok;Yu, I Sang;Kim, Wan Chan;Shin, Dong Hae;Ko, Young Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.788-796
    • /
    • 2017
  • This paper proposes a new measurement method to improve the shortcomings of an existing integral method for measuring heat flux in plug-type heat flux gauges in the high-temperature and high-pressure environments of liquid-rocket combustors. Using the existing integral measurement method, the calculation of the surface area for the heat flux in the gauge exhibits error in relation to the actual surface area. To solve this problem, transient profiles obtained from ANSYS Fluent were used to calculate unsteady heat flux as it adjusted to the measured temperature. First, a heat flux gauge was designed and manufactured specifically for use in the high-temperature and high-pressure conditions that are similar to those of liquid rocket combustors. A calibration test was performed to prove the reliability of the manufactured gauge. Then, a combustion experiment was conducted, in which the gauge was used to measure unsteady heat flux in a liquid rocket combustor that used kerosene and liquid oxygen as propellants. Reasonable heat flux values were obtained using the gauge. Therefore, the proposed measurement method is considered to offer significant improvement over the existing integral method.

Measurement of Critical Heat Flux Using the Transient Inverse Heat Conduction Method in Spray cooling (비정상 열전도 역산법에 의한 분무냉각 임계열유속(CHF)의 측정에 관한 연구)

  • Kim, Yeung Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.10
    • /
    • pp.653-658
    • /
    • 2016
  • A study on the measurement of critical heat flux using the transient inverse heat conduction method in spray cooling was performed. The inverse heat conduction method estimates the surface heat flux or temperature using a measured interior temperature history. The effects of the measuring time interval and location of temperature measurement on the measurement of critical heat flux were primarily investigated. The following results were obtained. The estimated critical heat flux decreased as the time interval of temperature measurement increased. Meanwhile, the effect of measurement location on critical heat flux was not significant. It was also found, from the experimental results, that the critical superheat increased as the measurement location of thermocouple neared the heat transfer surface.

Transient heat transfer analysis of functionally graded CNT reinforced cylinders with various boundary conditions

  • Moradi-Dastjerdi, Rasool;Payganeh, Gholamhassan
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.359-367
    • /
    • 2017
  • In this work, transient heat transfer analysis of functionally graded (FG) carbon nanotube reinforced nanocomposite (CNTRC) cylinders with various essential and natural boundary conditions is investigated by a mesh-free method. The cylinders are subjected to thermal flux, convection environments and constant temperature faces. The material properties of the nanocomposite are estimated by an extended micro mechanical model in volume fraction form. The distribution of carbon nanotube (CNT) has a linear variation along the radial direction of axisymmetric cylinder. In the mesh-free analysis, moving least squares shape functions are used for approximation of temperature field in the weak form of heat transform equation and the transformation method is used for the imposition of essential boundary conditions. Newmark method is applied for solution time depended problem. The effects of CNT distribution pattern and volume fraction, cylinder thickness and boundary conditions are investigated on the transient temperature field of the nanocomposite cylinders.

A study on the transient cooling process of a vertical-high temperature tube in an annular flow channel (환상유로에 있어서 수직고온관의 과도적 냉각과정에 관한 연구)

  • 정대인;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.156-164
    • /
    • 1986
  • In the case of boiling on high temperature wall, vapor film covers fully or parcially the surface. This phenomenon, film boiling or transition boiling, is very important in the surface heat treatment of metal, design of cryogenic heat exchanger and emergency cooling of nuclear reactor. Mainly supposed hydraulic-thermal accidents in nuclear reactor are LCCA (Loss of Coolant Accident) and PCM (Power-Cooling Mismatch). Recently, world-wide studies on reflooding of high temperature rod bundles after the occurrence of the above accidents focus attention on wall temperature history and required time in transient cooling process, wall superheat at rewet point, heat flux-wall superheat relationship beyond the transition boiling region, and two-phase flow state near the surface. It is considered that the further systematical study in this field will be in need in spite of the previous results in ref. (2), (3), (4). The paper is the study about the fast transient cooling process following the wall temperature excursion under the CHF (Critical Heat Flux) condition in a forced convective subcooled boiling system. The test section is a vertically arranged concentric annulus of 800 mm long and 10 mm hydraulic diameter. The inner tube, SUS 304 of 400 mm long, 8 mm I.D, and 7 mm O.D., is heated uniformly by the low voltage AC power. The wall temperature measurements were performed at the axial distance from the inlet of the heating tube, z=390 mm. 6 chromel- alumel thermocouples of 76 .mu.m were press fitted to the inner surface of the heating tube periphery. To investigate the heat transfer characteristics during the fast transient cooling process, the outer surface (fluid side) temperature and the surface heat flux are computed from the measured inner surface temperature history by means of a numerical method for inverse problems of transient heat conduction. Present cooling (boiling) curve is sufficiently compared with the previous results.

  • PDF

Quasi-Transient Method for Thermal Response of Blunt Body in a Supersonic Flow (준-비정상해석 기법을 통한 초음속 유동 내 무딘 물체의 열응답 예측)

  • Bae, Hyung Mo;Kim, Jihyuk;Bae, Ji-Yeul;Jung, Daeyoon;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.495-500
    • /
    • 2017
  • In the boundary layer of supersonic or hypersonic vehicles, there is the conversion from kinetic energy to thermal energy, called aerodynamic heating. Aerodynamic heating has to be considered to design supersonic vehicles, because it induces severe heat flux to surface. Transient heat transfer analysis with CFD is used to predict thermal response of vehicles, however transient heat transfer analysis needs excessive computing powers. Loosely coupled method is widely used for evaluating thermal response, however it needs to be revised for overestimated heat flux. In this research, quasi-transient method, which is combined loosely coupled method and conjugate heat transfer analysis, is proposed for evaluating thermal response with efficiency and reliability. Defining reference time of splitting flight scenario for transient simulation is important on accuracy of quasi-transient method, however there is no algorithm to determine. Therefore the research suggests the algorithm with various flow conditions to define reference time. Supersonic flow field of blunt body with constant acceleration is calculated to evaluate quasi-transient method. Temperature difference between transient and quasi-transient method is about 11.4%, and calculation time reduces 28 times for using quasi-transient method.

Transient Heat Transfer for the Evaporators of Capillary Pumped Loop at Intial Startup (초기시동 시의 모세펌핑 루프 증발기에 대한 과도열전달 해석)

  • Park, Byung-Kyu;Kim, Geun-Oh;Kim, Moo-Geun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.252-259
    • /
    • 2001
  • It is derived for the temperature profile in a cylindrical and planar shape capillary pumped loop evaporators subject to a uniform heat flux prior to the initiation of boiling using the finite difference method. The results of the analysis allow for the determination of applied power levels for which nucleation is likely to occur only within the vapor grooves of the evaporator while maintaining subcooling in the liquid core, thereby increasing the likelihood of a successful startup. Also, limits are found for which additional increases in the applied heat flux do not increase the temperature difference between the vapor grooves and the wick-liquid core interface. Several advantages of larger diameter evaporators observed experimentally in startup are explained and quantified by the model. This analysis is appropriate for standard capillary pumped loop evaporators during a fully-flooded startup as well as starter pump designs and loop heat pipes.

  • PDF

Specific Heat Measurement of Insulating Material using Heat Diffusion Method

  • Choi, Yeon-Suk;Kim, Dong-Lak
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.2
    • /
    • pp.32-35
    • /
    • 2012
  • The objective of the present work is to develop a precise instrument for measuring the thermal property of insulating material over a temperature range from 30 K to near room temperature by utilizing a cryocooler. The instrument consists of two thermal links, a test sample, heat sink, heat source and vacuum vessel. The cold head of the cryocooler as a heat sink is thermally anchored to the thermal link and used to bring the apparatus to a desired temperature in a vacuum chamber. An electric heater as a heat source is placed in the middle of test sample for generating uniform heat flux. The entire apparatus is covered by thermal shields and wrapped in multi-layer insulation to minimize thermal radiation in a vacuum chamber. For a supplied heat flux the temperature distribution in the insulating material is measured in steady and transient state. The thermal conductivity of insulating material is measured from temperature difference for a given heat flux. In addition, the specific heat of insulating material is obtained by solving one-dimensional heat diffusion equation.

A Study on the Heat Transfer of Carbon Steels in Quenching (탄소강의 담금질 열전달에 관한 연구)

  • 김경근;윤석훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.20-26
    • /
    • 1995
  • The very rapid cooling problem from $820^{\circ}$C to $20^{\circ}$C on the surface of the steel by thermal conduction including the latent heat of phase transformation of steel and by transient boiling heat transfer of water are considered to principal problem in quenching. The transient boiling process of water at the surface of specimen during the quenching process were experimentally analyzed. Then the heat flux was numerically calculated by the numerical method of inverse heat condition problem. In this report, the simulation program to calculate the cooling curves for large rolls was made using the subcooled transient boiling curve as a boundary condition. By this simulation program, the cooling curves of rolls from D=50mm to D=200mm were calculated and the effects of agitation of circulation of water also investigated.

  • PDF