• Title/Summary/Keyword: Transient Behavior

Search Result 733, Processing Time 0.034 seconds

Transient Analysis of a Simple Cycle Gas Turbine Engine

  • Kim, SooYong;Soudarev, B.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.2
    • /
    • pp.22-29
    • /
    • 2000
  • A method to simulate the gas turbine transient behavior is developed. The basic principles of the method and main input data required are described. Calculation results are presented in terms of whole operating regime of the engine. The influence of initial parameters such as starting engine power, moment of inertia of the rotor, fuel schedule on performance characteristics of gas turbine during transient operation is shown. In addition, the effect of bleeding air on transient behavior is also considered. For validation of the developed computer code, a comparative analysis with experimental data obtained from a heavy duty gas turbine is made. Calculation results agree well with the experimental data for the range of operating regime studied and proved applicability of the developed technique to initial design stage of control system.

  • PDF

Dynamic load concentration caused by a break in a Lamina with viscoelastic matrix

  • Reza, Arash;Sedighi, Hamid M.;Soleimani, Mahdi
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1465-1478
    • /
    • 2015
  • The effect of cutting off fibers on transient load in a polymeric matrix composite lamina was studied in this paper. The behavior of fibers was considered to be linear elastic and the matrix behavior was considered to be linear viscoelastic. To model the viscoelastic behavior of matrix, a three parameter solid model was employed. To conduct this research, finite difference method was used. The governing equations were obtained using Shear-lag theory and were solved using boundary and initial conditions before and after the development of break. Using finite difference method, the governing integro-differential equations were developed and normal stress in the fibers is obtained. Particular attention is paid the dynamic overshoot resulting when the fibers are suddenly broken. Results show that considering viscoelastic properties of matrix causes a decrease in dynamic load concentration factor and an increase in static load concentration factor. Also with increases the number of broken fibers, trend of increasing load concentration factor decreases gradually. Furthermore, the overshoot of load in fibers adjacent to the break in a polymeric matrix with high transient time is lower than a matrix with lower transient time, but the load concentration factor in the matrix with high transient time is lower.

An Analysis of the Transient's Social Behavior in the Radiological Emergency Planning Zone (방사선 비상계획구역에서의 일시거주자의 사회행동 특성 분석)

  • Bang, Sun-Young;Lee, Gab-Bock;Chung, Yang-Geun;Lee, Jae-Eun
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.2
    • /
    • pp.71-78
    • /
    • 2007
  • The purpose of this study is to analyze the social behavior, especially, the evacuation-related social behavior, of the transients in the radiological emergency planning zone(EPZ) of nuclear power plants. So, the meaning and kinds of the evacuation and the significance of the trip generation time(TGT) have been reviewed. The characteristics of the social behavior of the transient around Ulchin, Wolsong and Kori sites was analyzed through field surveys by using the questionnaire. The major findings of this research implications are as follows. First, for securing the safe evacuation, the alternatives to effectively provide the information on the evacuation warning may be prepared. Second, it is necessary to establish the education and training of transient's evacuation. Third, it is needed that the cause and background of the evacuation refusal are identified and the new response plan to secure transient's safety is prepared.

An Experimental Study on Transient Characteristics of PEM Fuel Cell Stack (PEM 연료전지 스택의 과도상태 출력특성에 관한 실험적 연구)

  • Kim, Hyun-il;Hwang, Jae-Soon;Chung, Tae-Yong;Shin, Dong-Hoon;Nam, Jin-Hyun;Kim, Young-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2003-2008
    • /
    • 2007
  • The transient power characteristics of a PEM fuel cell stack was experimentally studied using a commercial 1.2kW PEM fuel cell ($Nexa^{TM}$ Power Module, Ballard Power System Inc.). The conditions in PEM fuel cell stack such as temperature and water content change rather slowly because of their large heat capacity and long channel length, which results in long transient time to converge to a steady state. The steady characteristics of the PEM fuel cell module was determined first, followed by the measurement of its transient characteristics upon stepwise and continuous load current changes. During the stepwise current change from 5A to 25A, the output voltage initially decreased below the steady voltage and then increased gradually. Similar behavior was also observed for the stepwise current change from 25A to 5A. This transient behavior is explained with reference to the evolution of the temperature and water content of the PEM fuel cell stack.

  • PDF

Observer-Based Robust Control Giving Consideration to Transient Behavior for Linear Uncertain Discrete-Time Systems

  • Oya, Hidetoshi;Hagino, Kojiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.903-908
    • /
    • 2003
  • In this paper, we present an observer-based robust controller which achieves not only robust stability but also an performance robustness for linear uncertain discrete-time systems. The performance robustness means that comparing the transient behavior of the uncertain system with a desired one generated by the nominal system, the deterioration of control performance (i.e. the error between the real response and the desired one) is suppressed without excessive control input. The control law consists of a state feedback law for the nominal system and a compensation input given by a feedback form of an estimated error signal. In this paper, we show that conditions for the existence of the observer-based controller are given in terms of linear matrix inequalities (LMIs). Finally, a numerical example is given to illustrate the proposed technique.

  • PDF

Effect of the size of active device and heatsink of power MOSFETs on its the junction to ambient transient thermal behavior

  • Koh, Jeong-Wook;An, Chul
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.241-244
    • /
    • 2000
  • To investigate the compact effect of the different area of an active layer and the different type of heatsink on the junction to ambient transient thermal impedance, we have characterized the thermal behavior of power MOSFETs that have three different areas of an active layer and two types of heatsink. To do so, the "cooling curve method" has been used in order to measure the junction-to-ambient transient thermal impedance Zthja that represents the thermal behavior of the devices. The measured data depiets that the larger area of an active layer gives the better-in other words. smaller-thermal impedance, and that the larger size of a heatsink improves the thermal impedance.

  • PDF

Analysis of Start-Up Characteristics of Gas Turbines for Power Generation (발전용 가스터빈의 시동특성 해석)

  • Kim, Jae-Hwan;Song, Tae-Won;Kim, Tong-Seop;Ro, Sung-Tack
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.662-667
    • /
    • 2000
  • A simulation procedure for a full transient analysis of the start-up of heavy-duty gas turbines for power generation is constructed. Compressor stages are grouped into three categories (front, mid, rear) and three different stage characteristic curves are applied to consider the different low-speed operating characteristics. Start-up behavior of a typical single-shaft gas turbine for power generation is simulated. The predicted transient behavior shows a good agreement with the field data. Special attention is paid to the effects of the modulation of VIGV on start-up characteristics, which play a key role in the stable operation of gas turbines.

  • PDF

Electrochemical behavior of dissolved hydrogen at Pt electrode surface in a high temperature LiOH-H3BO3 solution: Effect of chloride ion on the transient current of the dissolved hydrogen

  • Myung-Hee Yun;Jei-Won Yeon
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3659-3664
    • /
    • 2023
  • The electrochemical behavior of dissolved hydrogen (H2) was investigated at a Pt electrode in a high temperature LiOH-H3BO3 solution. The diffusion current of the H2 oxidation was proportional to the concentration of the dissolved H2 as well as the reciprocal of the temperature. In the polarization curve, a potential region in which the oxidation current decreases despite an increase in the applied potential between the H2 oxidation and the water oxidation regions was observed. This potential region was interpreted as being caused by the formation of a Pt oxide layer. Using the properties of the Cl- ion that reduces the growth rate of the Pt oxide layer, it was confirmed that there is a correlation between the Cl- ion concentration and the transient current of the H2 oxidation.

Transient filling simulations in unidirectional fibrous porous media

  • Liu, Hai Long;Hwang, Wook-Ryol
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.71-79
    • /
    • 2009
  • The incomplete saturation and the void formation during the resin infiltration into fibrous porous media in the resin transfer molding process cause failure in the final product during its service. In order to better understand flow behavior during the filling process, a finite-element scheme for transient flow simulation across the micro-structured fibrous media is developed in the present work. A volume-of- fluid (VOF) method has been incorporated in the Eulerian frame to capture the evolution of flow front and the vertical periodic boundary condition has been combined to avoid unwanted wall effect. In the microscale simulation, we investigated the transient filling process in various fiber structures and discussed the mechanism leading to the flow fingering in the case of random fiber distribution. Effects of the filling pressure, the shear-thinning behavior of fluid and the volume fraction on the flow front have been investigated for both intra-tow and the inter-tow flows in dual-scale fiber tow models.

A Study on Dynamic and Acoustic Behavior of Beel Type Structure Using Finite Element Method (유한요소법을 이용한 종형 구조물의 동적거동 및 음향거동에 관한 연구)

  • 정석주
    • Journal of KSNVE
    • /
    • v.6 no.4
    • /
    • pp.447-456
    • /
    • 1996
  • Dynamic characteristics of the bell-type structure including acoustic effects and transient dynamic problems were analyzed numerically. Natural frequencies, mode shapes and transient dynamic analysis used the finite element method with 3-D general shell element. Mode shapes and stress distributions of transient dynamic analysis were expressed by computer graphics. The method using this study was evaluated by comparision of theoretical results at reference papers(14), (15) and the experimental test using Fast Fourier Transform analyzer. Vibrational modes governing acoustic characteristics of the typical bell-type structure depended on the first flexural mode(4-0 mode) and the second flexural mode(6-0 mode). Asymmetric effects by Dangiwas, acoustic holes gave rise to beat frequencies, and the Dangjwa was found to be most effective. When impact load acted on the bell, stress concentration occured at the rim part of bell. It was found that the bell type structure should be designed thickly at the rim part in order to prevent impact load from stress concentration.

  • PDF