• Title/Summary/Keyword: Transgenic line

Search Result 198, Processing Time 0.037 seconds

Development of a Screening System for Plant Defense-Inducing Agent using Transgenic Tobacco Plant with PR-1a Promoter and GUS Gene

  • Oh, Sang-Keun;Lee, Seon-Woo;Kwon, Suk-Yoon;Choi, Do-Il
    • The Plant Pathology Journal
    • /
    • v.21 no.3
    • /
    • pp.288-292
    • /
    • 2005
  • Pathogenesis-related protein-1a (PR-1a) is strongly induced in tobacco plants by pathogen attack, exogenous salicylic acid (SA) application and by other developmental processes. In order to develop a rapid screening system for the selection of plant defense-inducing compounds originated from various sources, we have transformed tobacco Samsun NN plants with a chimeric construct consisting of GUS $(\beta-glucuronidase)$. In the $T_1$ generation, three transgenic lines having stable GUS expression were selected for further promoter analysis. Using GUS histochemical assay, we observed strong GUS induction driven by PR-1a promoter in PR1a-GUS transgenic tobacco leaves in response to the exogenous application of SA or benzol (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester (BTH), a SA­derivative compound. In addition, GUS expression was maintained locally or systemically in PR1a-GUS transgenic line $\#5\;T_2$ generation) until after 3 days when they were treated with same chemicals. Our results suggested that the PR1a-GUS reporter gene system in tobacco plants may be applicable for the large-scale screening of defense-inducing substances.

Production and Secretion of Human Interleukin-18 in Transgenic Tobacco Cell Suspension Culture

  • Sharma, Niti;Kim, Tae-Geum;Yang, Moon-Sik
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.2
    • /
    • pp.154-159
    • /
    • 2006
  • Interleukin-18 (IL-18), otherwise known as interferon-gamma-inducing factor (IGIF), is one of several well characterized and important cytokines that contribute to host defenses. The complementary DNA (cDNA) of mature human interleukin-18 gene (hIL-18) was fused with the signal peptide of the rice amylase 1A gene (Ramy1A) and introduced into the plant expression vector under the control of a duplicated CaMV 35S promoter. The recombinant plasmid was transformed into tobacco (Nicotiana tabacum L. cv Havana) using the Agrobacterium-mediated transformation method. The integration of the hlL-18 gene into the genome of transgenic tobacco plants was confirmed by polymerase chain reaction (PCR) amplification and its expression was observed in the suspension cells that were derived from the transgenic plant callus by using Northern blot analysis. The hlL-18 protein was detected in the extracts of the transgenic callus and in the medium of the transgenic tobacco suspension culture by using immunoblot analysis. Based upon enzyme-linked immunosorbant assay (ELISA) results, the expression level of the hlL-18 protein approximated $166{\mu}g/L$ in the suspension culture medium. Bioassay results from the induction of $interferon-{\gamma}$ from a KG-1 cell line indicated that the hlL-18 secreted into the suspension culture medium was bioactive.

Development of transgenic disease-resistant root stock for the growth of watermelon

  • Cho, Song-Mi;Chung, Soo-Jin;Moon, Sun-Jin;Kim, Kwang-Sang;Kim, Young-Cheol;Cho, Baik-Ho
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2004.10a
    • /
    • pp.62-65
    • /
    • 2004
  • To protect the watermelon against soil-borne pathogens, we are currently producing disease-resistant transgenic root stock for the growth of watermelon, A defensin gene (J1-1) from Capsicum annum, a ACC deaminase gene from Pseudomonas syringae, a galactinol synthase (CsGolS) gene from Cucumis sativus, and a WRKY (CvWRKY2) gene from Citullus vulgaris were used as transgenes for disease resistance. The gene were transformed into a inbred line (6-2-2) of watermelon, Kong-dae watermelon and a inbred line (GO702S) of gourd, respectively, by Agrobacterium-mediated transformation. Putative transgenic plants were selected in medium containing 100mg/L kanamycin, and then integration of the genes into the genomic DNA were demonstrated by PCR analysis. Successful integration of the gene in regenerated plants was also confirmed by PCR (Figf 1), genomic Southern blot (Fig 2), RT-PCR (Fig 3), and Northern blot analysis(Fig 4). Several T1 lines having different transgene were produced, and disease resistance of the T1 lines are under estimation.

  • PDF

The Effects of the Transgenic Aspergillus oryzae Supplementation on Performance, Egg Quality and Intestinal Microflora of Layers (형질 전환 Aspergillus oryzae의 첨가가 산란계의 생산성, 계란 품질 및 장내 미생물 변화에 미치는 영향)

  • Jung, B.Y.;Park, S.W.;Paik, I.K.;Cho, K.J.;Lee, S.S.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.547-554
    • /
    • 2005
  • An experiment was conducted to investigate the dietary effects of a transgenic Aspergillus oryzae(AO) culture on the performance, egg quality and intestinal microflora of layers. A total of 840 Hy-line Brown layers of 39wks old were assigned to one of the following 7 dietary treatments: control(C), C+0.2% AO culture, C+0.5% AO culture, C+0.2% transgenic AO culture, C+0.5% transgenic AO culture, C+0.2% transgenic mutant AO culture, and C+0.5% transgenic mutant AO culture. The transgenic AO was made by inserting Salmonella gallinarum gene to AO. And the transgenic mutant AO was made by inserting Salmonella gallinarum gene to mutant AO which was mutated by UV irradiation. Each treatment was replicated six times with 20 birds housed in 2 bird cage. Twenty birds units were arranged according to completely randomized block design. Feeding trial lasted for 8wks under 16 hour lighting regimen. Laying performance and egg quality were significantly(P<0.05) affected by the treatments. Transgenic AO culture supplementation at the level of 0.2% significantly increased egg production, while its egg weight was significantly decreased compared to that of the control. Feed intake and feed conversion ratio(FCR) were not significantly different among the AO treatments and the control. The eggshell strength of the AO treatments was significantly higher than that of the control. Transgenic mutant AO culture supplemented at the level of 0.5% significantly increased egg yolk color. Intestinal microflora were significantly(P<0.05) affected by the treatments. The cfu of Lactobacilli spp. significantly increased and those of Salmonella species and E. coli decreased in the AO treatments. The transgenic AO and transgenic mutant AO culture were more effective than the AO culture in reducing the cfu of Salmonella species and E. coli. It is concluded that supplementation of the transgenic AO culture at the level of 0.2% could be recommended for the improvement of egg production. Supplementation of transgenic AO or transgenic mutant AO culture at 0.2% level effectively controlled intestinal Salmonella species population.

Expression of the S glycoprotein of transmissible gastroenteritis virus (TGEV) in transgenic potato and its immunogenicity in mice

  • Ahn, Dong-Joo;Youm, Jung Won;Kim, Suk Weon;Yoon, Won Kee;Kim, Hyoung Chin;Hur, Tai-Young;Joung, Young Hee;Jeon, Jae-Heung;Kim, Hyun Soon
    • Korean Journal of Veterinary Research
    • /
    • v.53 no.4
    • /
    • pp.217-224
    • /
    • 2013
  • Transgenic plants have been tested as an alternative host for the production and delivery of experimental oral vaccines. Here, we developed transgenic potatoes that express the major antigenic sites A and D of the glycoprotein S from transmissible gastroenteritis coronavirus (TGEV-$S_{0.7}$) under three expression vector systems. The DNA integration and mRNA expression level of the TGEV-$S_{0.7}$ gene were confirmed in transgenic plants by PCR and northern blot analysis. Antigen protein expression in transgenic potato was determined by western blot analysis. Enzyme-linked immunosorbent assay results revealed that based on a dilution series of Escherichia coli-derived antigen, the transgenic line P-2 had TGEV-$S_{0.7}$ protein at levels that were 0.015% of total soluble proteins. We then examined the immunogenicity of potato-derived TGEV-$S_{0.7}$ antigen in mice. Compared with the wild-type potato treated group and synthetic antigen treated group, mice treated with the potato-derived antigen showed significantly higher levels of immunoglobulin (Ig) G and IgA responses.

Overexpression of a Chromatin Architecture-Controlling ATPG7 has Positive Effect on Yield Components in Transgenic Soybean

  • Kim, Hye Jeong;Cho, Hyun Suk;Pak, Jun Hun;Kim, Kook Jin;Lee, Dong Hee;Chung, Young-Soo
    • Plant Breeding and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.237-242
    • /
    • 2017
  • AT-hook proteins of plant have shown to be involved in growth and development through the modification of chromatin architecture to co-regulate transcription of genes. Recently, many genes encoding AT-hook protein have been identified and their involvement in senescence delay is investigated. In this study, soybean transgenic plants overexpressing chromatin architecture-controlling ATPG7 gene was produced by Agrobacterium-mediated transformation and investigated for the positive effect on the important agronomic traits mainly focusing on yield-related components. A total of 27 transgenic soybean plants were produced from about 400 explants. $T_1$ seeds were harvested from all transgenic plants. In the analysis of genomic DNAs from soybean transformants, ATPG7 and Bar fragments were amplified as expected, 975 bp and 408 bp in size, respectively. And also exact gene expression was confirmed by reverse transcriptase-PCR (RT-PCR) from transgenic line #6, #7 and #8. In a field evaluation of yield components of ATPG7 transgenic plants ($T_3$), higher plant height, more of pod number and greater average total seed weight were observed with statistical significance. The results of this study indicate that the introduction of ATPG7 gene in soybean may have the positive effect on yield components.

CGMMV Tolerance Test of CGMMV-CP Trangenic Watermelon Rootstock and Establishment of Transgenic Line (CGMMV-CP 형질전환 수박대목의 CGMMV 내성시험 및 계통확보)

  • Park, Sang-Mi;Kwon, Jung-Hee;Lim, Mi-Young;Shin, Yoon-Sup;Her, Nam-Han;Lee, Jang-Ha;Ryu, Ki-Hyun;Harn, Chee-Hark
    • Journal of Plant Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.11-17
    • /
    • 2007
  • Previously developed transgenic watermelon rootstocks (gongdae) inserted by CGMMV-CP were examined to test the virus tolerance levels. In the restricted plastic house, the $T_{3}$ watermelon rootstock showed tolerance to CGMMV until 70 days after inoculation on the leaves while the non-transformed watermelon rootstock became susceptible at 20 days after inoculation. In the field, tolerance efficiency of transgenic rootstocks maintained up to 40% at 71 days after contamination with CGMMV in the soil while all of the non-transformed rootstocks became susceptible at 37 days with the same condition. In the same field, transgenic rootstocks showed more tolerance to CGMMV than the non-transformed rootstocks as those were inoculated on the leaves, but it showed only 10 days delay before being susceptible. Therefore, transgenic rootstocks have a characteristic of delay effect against CGMMV susceptibility, rather than resistance character. From $T_{3}$ rootstocks homozygous for the CGMMV-CP horticulturally favorable individuals were selected for further breeding and a transgenic line was finally obtained at the $BC_{1}T_{5}$. A material transfer experiment was conducted to find out if the DNA, RNA or expressed protein in the transgenic rootstocks could move to the grafted scion (non-transformed watermelon, Super-Kumcheon). PCR, northern, and western blot analysis were performed and no evidence of transferring of those materials from rootstock to scion was ever found.

Gene Silencing Induced by Cytosine Methylation in Transgenic Tomato (형질전환 토마토에서 Cytosine Methylation에 의한 유전자발현 억제)

  • Jung, Seo-Hee;Min, Sung-Ran;Lee, Soo-Young;Park, Ji-Young;Davarpanah, S Javad;Chung, Hwa-Jee;Jeon, Jae-Heung;Liu, Jang-Ryol;Jeong, Won-Joong
    • Journal of Plant Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.323-329
    • /
    • 2007
  • Transgene expression was analyzed in tomato plants. Four lines of neomycin phosphotransferase II gene (NPTII) and the trehalose biosynthetic fusion gene (TPSP) transformed $T_0$ plants showed kanamycin resistance on selection medium. However, the analysis of phenotype (kanamycin resistance) and mRNA expression in $T_1$ plants indicated that the expression of the NPTII and TPSP transgenes was down-regulated to an undetectable level in two independent lines 1 and 11. Southern analysis demonstrated that the lines 1 and 11 had multicopies of the transgenes, whereas the typical transgenic lines 2 and 10 had 1 or 2 copies. DNA methylation analysis using methylation sensitive enzyme detected accumulated CpG DNA methylation on TPSP coding region and CaMV35S promoter region in the line 11, but not the typical transgenic line 2. These results suggest that multicopy transgene in plants is attributed to down-regulation of the transgene expression via transcriptional gene silencing.

Recent Progress in Biotechnology-based Gene Manipulating Systems to Produce Knock-In/Out Mouse Models

  • Lee, Woon Kyu;Park, Joong Jean;Cha, Seok Ho;Yun, Cheol-Heui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.5
    • /
    • pp.745-753
    • /
    • 2008
  • Gene-manipulated mice were discovered for the first time about a quarter century ago. Since then, numerous sophisticated technologies have been developed and applied to answer key questions about the fundamental roles of the genes of interest. Functional genomics can be characterized into gain-of-function and loss-of-function, which are called transgenic and knock-out studies, respectively. To make transgenic mice, the most widely used technique is the microinjection of transgene-containing vectors into the embryonic pronucleus. However, there are critical drawbacks: namely position effects, integration of unknown copies of a foreign gene, and instability of the foreign DNA within the host genome. To overcome these problems, the ROSA26 locus was used for the knock-in site of a transgene. Usage of this locus is discussed for the gain of function study as well as for several brilliant approaches such as conditional/inducible transgenic system, reproducible/inducible knockdown system, specific cell ablation by Cre-mediated expression of DTA, Cre-ERTM mice as a useful tool for temporal gene regulation, MORE mice as a germ line delete and site specific recombinase system. Techniques to make null mutant mice include complicated steps: vector design and construction, colony selection of embryonic stem (ES) cells, production of chimera mice, confirmation of germ line transmission, and so forth. It is tedious and labor intensive work and difficult to approach. Thus, it is not readily accessible by most researchers. In order to overcome such limitations, technical breakthroughs such as reporter knock-in and gene knock-out system, production of homozygous mutant ES cells from a single targeting vector, and production of mutant mice from tetraploid embryos are developed. With these upcoming progresses, it is important to consider how we could develop these systems further and expand to other animal models such as pigs and monkeys that have more physiological similarities to humans.

Virus-resistant and susceptible transgenic Nicotiana benthamiana plants expressing coat protein gene of Zochini green mottle mosaic virus for LMO safety assessment

  • Park, M.H.;B.E. Min;K.H. Ryu
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.146.1-146
    • /
    • 2003
  • Transgenic Nicotiana benthmiana plants harboring and expressing coat protein (CP) gene of Zucchini green mottle mosaic virus (ZGMMV) were generated for both virus-resistant screening and complementation analysis of related viruses and environmental safety assessment (SA) of living modified organism (LMO) purposes. Transformation of leaf disc of N. benthamiana was performed using Agrobacterium-mediated method and the pZGCPPGA748 containing the ZGMMV CP and NPTII genes. Two kinds of transgenic homozygous groups, virus-resistant and -susceptible lines, were obtained by screening of challenging homologous virus for T1 generations. Complementation of CP-deficient related virus was analyzed using the susceptible line of ZGMMV. These two pathologically different lines can be useful for host-virus interactions and LMO environmental SA.

  • PDF