• 제목/요약/키워드: Transgenesis

검색결과 60건 처리시간 0.025초

Production of Transgenic Granulosa Cells after Retrovirus Vector Injection into Follicle in Mouse

  • Ju, Jin-Young;Chi, Hee-Jun;Koo, Jung-Jin;Kim, Teoan;Lee, Hoon-Taek;Chung, Kil-Saeng
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2001년도 춘계학술발표대회
    • /
    • pp.62-62
    • /
    • 2001
  • Recently, production of transgenic animal by nuclear transfer has been known as a useful method. The production of cloned offspring derived from nuclear transfer depends upon a variety of factors such as species, donor cells type and cell cycle, and source of recipient ova. Therefore, we attempted a different transgenic methods using follicular granulosa cells (GCs). In general, ovulated GCs undergoes lutenization and transformation in vitro which might defective effects on developmental potential. In order to avoid the GCs transformation in vitro culture system, we introduced a direct injection of retrovirus into the follicles and then collected them mechanically from ovaries of 6-8 week-old ICR mice. Retrovirus vector constructed with pLN $\beta$ EGFP was injected into the follicles. The follicles are cultured in $\alpha$ -MEM supplemented with human FSH, LH and ITS in Costar Transwell dish for 4 days. Survival rate of virus injected follicles was 52.1% (12/23) and expression rate of EGPP gene was 33.3% (4/12). In this study, we found GCs performed transgenesis in our culture system. In addition, the GCs in follicle may be developed in vivo like environment rather than in vitro environment. Thus, the use of GCs as donor cells may be useful in the nuclear transfer for cloning of genetic modification. Therefore, these results suggest that follicular GCs can be transfected by viral vector during folliculogenesis in vitro.

  • PDF

Migration Activity of Chicken Gonadal Primordial Germ Cells (gPGCs) and Post-transfer Localization of LacZ-transfected gPGCs in the Embryonic Gonads

  • Jeong, D.K.;Han, J.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권9호
    • /
    • pp.1227-1231
    • /
    • 2002
  • A powerful tool for chicken transgenesis could be established by employing a germline chimera production through primordial germ cell transplantation. This study was conducted to examine whether foreign gene-transfected gonadal primordial germ cells (gPGCs) have a migration activity into the gonad after transfer to recipient embryos. In Experiment 1, gPGCs of Korean Ogol Chicken were retrieved from 5.5-day-old embryos and subsequently transferred to the dorsal aorta of 2.5-day-old White Leghorn embryos after being labeled with PKH26 fluorescent dye. To confirm migration activity after transplantation, recipient embryos were sacrificed and examined on 3 days after transfer. Sex determination was concomitantly undertaken to examine whether sex of recipient embryos could affect the migration activity of gPGCs. All of embryonic gonads examined showed positive signals with PKH26 fluorescence and W-chromosome specific band by polymerase chain reaction (PCR) was detected in male embryos when gPGCs with ZW chromosome were transferred to recipient embryos. In Experiment 2, retrieved gPGCs were transfected with LacZ gene-containing cytomegalovirus promoter ($pCMV{\beta}$) by electroporation and subsequently transferred to recipient embryos. LacZ gene expression was identified in the gonads of 6 or 10-day-old recipient embryos and hatched-chicks. A total of 20 embryos and 12 hatched-chicks were examined and 11 of them (10 embryos and one hatched chicken; 11/32=34.4%) expressed $\beta$-galactosidase, a marker substance of LacZ gene. The results of this study demonstrated that foreign gene-transfected gPGCs can migrate and settle down into the gonad after being transferred into the blood vessel of the recipient embryos. This established technique will contribute to developing a peer biotechnology for transgenic chicken.

Multiple Ovulations and In vitro Fertilization in the Domestic Fowl (Gallus domesticus)

  • Han, Haitang;Zhao, Chen;Li, Zandong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권12호
    • /
    • pp.1652-1656
    • /
    • 2004
  • The aim of this study was to obtain mature ova or embryos at a single cell stage, which can be used in avian transgenesis and nuclear transfer through multiple ovulations, in vitro fertilization and culture. Chicken anterior pituitary extract (CAPE) or acetone-dried chicken anterior pituitary extract (ACAPE) was used to induce multiple ovulations in hens pretreated with pregnant mare' serum gonadotrophin (PMSG). In vitro fertilization of the multiple ovulated ova was performed by inseminating sperm onto the germinal disks in m-Ringer' solution and incubating the ova at 41$^{\circ}C$, 5% $CO_2$ for 10 h in DME-F12 medium containing 20% liquid albumen. The in vitro fertilization process was observed using an environmental scanning electron microscope. When normal laying hens (white Leghorn) were administered daily with PMSG (100 IU), egg laying ceased in most hens within 3 to 8 days. Ovulation began to occur about 7.5 h after injection of CAPE and ACAPE. The number of ovulated ova was 1.00${\pm}$0.00, 2.33${\pm}$0.52 and 2.20${\pm}$0.45, respectively, after receiving 100, 200 and 300 mg CAPE. The number of ovulated ova was 2.00${\pm}$0.00, 2.86${\pm}$0.69 and 3.00${\pm}$1.22, respectively, after receiving 10, 15 and 20 mg ACAPE. The fertilized and cultured ova were able to develop into embryos up to the 32 cell stage. The present experiments demonstrated that multiple ovulations can be induced by CAPE and ACAPE successfully, and the ova resulted from the treatment retained the capability for further fertilization and embryonic development. These data provide new information to support the establishment of an in vitro culture system for future avian transgenesis studies.

비바이러스 In Ovo 직접주입법에 의한 메추리 형질전환 시스템 (Non-Viral Transgenesis via Direct In Ovo Lipofection in Quail)

  • 박태섭;한재용
    • 한국가금학회지
    • /
    • 제42권3호
    • /
    • pp.239-245
    • /
    • 2015
  • Transgenic animals have been widely used for developmental biology studies, as disease models, and even in industry such as transgenic bioreactor animals. For transgenic birds, quail has the great advantages of small body size, short generation time, and frequent egg production. To date, retroviral or lentiviral transduction has been used to generate transgenic quail for various purposes. However, the efficiency of transgenic offspring production with these methods is relatively low and viral vector usage has safety issues. Unfortunately, non-viral transgenesis has not been established in quail due to a deficiency of stem cell and germ cell culture systems. In this study, we established a direct in ovo lipofection method that could be used to create transgenic quail without germline-competent cells or viruses. To optimize the injection stage during embryo development, the liposome complex (containing piggyBacCMV-GFP and transposase plasmids) was introduced into an embryonic blood vessel at 50 hr, 55 hr or 60 hr. GFP expression was detected in various tissues (heart, kidney, liver and stomach) on day 12 of incubation under a fluorescence microscope. Additionally, GFP-positive cells were detected in the recipient embryonic gonads. In conclusion, the direct in ovo lipofection method with the piggyBac transposon could be an efficient and useful tool for generating transgenic quail.

Intravenous Delivery of Transgene-Liposome Complexes

  • Park, Seung-Kyu;Kim, Sun-Uk;Cho, Na-Na;Park, Chang-Sik;Lee, Sang-Ho
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2004년도 춘계학술발표대회
    • /
    • pp.187-187
    • /
    • 2004
  • Gene delivery is one of the keen interests in animal industry as well as research on gene function. Some of the in vivo gene delivery techniques have been successively used in various tissues for the gene therapy and transgenesis. Despite intensive efforts, it still remains to overcome problems of limited local and regional administration and low transgene expression. (omitted)

  • PDF

Development of complete Culture System for Quail Embryos and Its Application for Embryo Manipulation

  • Ono, T.
    • 한국가금학회지
    • /
    • 제28권2호
    • /
    • pp.155-163
    • /
    • 2001
  • Gene and cell transfer technique will serve as a powerful tool for the genetic improvement of the poultry and to yield useful products. For avian transgenesis, Japanese quail may serve as an excellent animal model because of its small body size and fast growth rate. Recent progress was described on the manipulation of quail embryos such as the introduction of foreign genes and cells, and the subsequent culturing of the manipulated embryos yielding hatchlings. Intraspecific donor-derived offspring have been available in quail, however, further investigation will be required to obtain interspecific offspring with the aim of rescuing endangered species. Trans genesis will also be useful for improving the profitability and quality of poultry stocks and for developing stocks with novel uses. Considerable progress should soon be made toward the production of transgenic poultry. The key feature of the procedure described here is that embryos are initially taken out from the shell for ease of manipulation and then placed back in culture in addition to various operations midway during culture.

  • PDF

Recent Advances in Biotechnology Applications to Aquaculture

  • Lakra, W.S.;Ayyappan, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권3호
    • /
    • pp.455-462
    • /
    • 2003
  • Biotechnological research and development are moving at a very fast rate. The subject has assumed greatest importance in recent years in the development of agriculture and human health. The science of biotechnology has endowed us with new tools and tremendous power to create novel genes and genotypes of plants, animals and fish. The application of biotechnology in the fisheries sector is a relatively recent practice. Nevertheless, it is a promising area to enhance fish production. The increased application of biotechnological tools can certainly revolutionise our fish farming besides its role in biodiversity conservation. The paper briefly reports the current progress and thrust areas in the use of synthetic hormones in fish breeding, production of monosex, uniparental and polyploid individuals, molecular biology and transgenesis, biotechnology in aquaculture nutrition and health management, gene banking and the marine natural products.

Animal Breeding: What Does the Future Hold?

  • Eisen, E.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권3호
    • /
    • pp.453-460
    • /
    • 2007
  • An overview of developments important in the future of animal breeding is discussed. Examples from the application of quantitative genetic principles to selection in chickens and mice are given. Lessons to be learned from these species are that selection for production traits in livestock must also consider selection for reproduction and other fitness-related traits and inbreeding should be minimized. Short-term selection benefits of best linear unbiased predictor methodology must be weighed against long-term risks of increased rate of inbreeding. Different options have been developed to minimize inbreeding rates while maximizing selection response. Development of molecular genetic methods to search for quantitative trait loci provides the opportunity for incorporating marker-assisted selection and introgression as new tools for increasing efficiency of genetic improvement. Theoretical and computer simulation studies indicate that these methods hold great promise once genotyping costs are reduced to make the technology economically feasible. Cloning and transgenesis are not likely to contribute significantly to genetic improvement of livestock production in the near future.

Gene-editing techniques and their applications in livestock and beyond

  • Tae Sub Park
    • Animal Bioscience
    • /
    • 제36권2_spc호
    • /
    • pp.333-338
    • /
    • 2023
  • Genetic modification enables modification of target genes or genome structure in livestock and experimental animals. These technologies have not only advanced bioscience but also improved agricultural productivity. To introduce a foreign transgene, the piggyBac transposon element/transposase system could be used for production of transgenic animals and specific target protein-expressing animal cells. In addition, the clustered regularly interspaced short palindromic repeat-CRISPR associated protein 9 (CRISPR-Cas9) system have been utilized to generate chickens with knockout of G0/G1 switch gene 2 (G0S2) and myostatin, which are related to lipid deposition and muscle growth, respectively. These experimental chickens could be the invaluable genetic resources to investigate the regulatory pathways and mechanisms of improvement of economic traits such as fat quantity and growth. The gene-edited animals could also be applicable to the livestock industry.

랫드 배아 조작 효율 향상을 위한 배양 조건 (Culture Conditions for Improving Manipulation Efficiency of Rat Embryo)

  • 이지민
    • 한국환경과학회지
    • /
    • 제32권3호
    • /
    • pp.173-179
    • /
    • 2023
  • Rats are one of the most widely used animals in biomedical sciences because their metabolism and physiology are comparable to humans. In recent years, gene-targeted models have been developed using various animal species utilizing engineered nucleases such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated gene (Cas). It has recently become possible to efficiently transfect CRISPR/Cas into embryos via electroporation. However, electroporation can damage fertilized eggs; therefore, it is important to determine the optimal embryo culture conditions. A standardized approach for routine and reproducible rat transgenesis will render rat models more accessible for research. We performed experiments to obtain rat embryos with efficient superovulation and synchronization, and to investigate the appropriate medium conditions for pronuclear stage embryos subjected to electroporation stimulation for the introduction of engineered nuclease.