• Title/Summary/Keyword: Transgene mice

Search Result 53, Processing Time 0.029 seconds

Stable Inheritance of Bovine $\beta$-Casein/Bovine Growth Hormone Fusion Gene in Transgenic Mice (형질전환 생쥐에서 Bovine $\beta$-Casein/Bovine Growth Hormone 재조합 유전자의 유전적 안정성에 관한 연구)

  • 최영희;오건봉;강용국;방남수;서길웅;이경광;이철상
    • Korean Journal of Animal Reproduction
    • /
    • v.22 no.3
    • /
    • pp.237-244
    • /
    • 1998
  • To investigate the fidelity of transgene transmission and expression, we produced transgenic mice carrying bovine $\beta$-casein/bovine grwoth hormone(bGH) fusion gene and examined transmission efficiency and expression level of the transgene in the founders and their progeny. The transgene was composed of 1.8 kb bovine $\beta$-casein promoter and 2.1 kb bGH gene. Ten transgenic mice were produced. Milk and mammary gland were collected from eight transgenic lines at 10-day lactation and a, pp.ied to Western and Northern blot analyses. The bGH expression was detected in four of them. The concentrations of bGH in milk were highly variable from 4$\mu\textrm{g}$/ml to 600$\mu\textrm{g}$/ml depending on the lines. The bGH mRNA level in mammary gland was closely correlated with the bGH concentration in milk in each transgenic line. These results indicated that bGH transgene expression was a, pp.opriately regulated in the mammary gland and secreted into milk in transgenic mice. By using two transgenic lines(#2, #7) secreting a considerable amoung of bGH into their milk, the inferitance and maintenance of transgenic phenotype were assessed in successive four generations. The mean transmission frequencies of transgene in lines #2 and #7 were 34% and 40%, respectively. The bGH concentration in milk were 80, 240, 120, 60$\mu\textrm{g}$/ml in each G0(generation 0), G2, G3, G4 generation of line #2 and 600, 1600, 860, 900$\mu\textrm{g}$/ml in each G1. G2, G3, G4 generation of line #7. These results demonstrated that bovine $\beta$-casein/bGH gene was stably transmitted from generation to generation in a Menelian fashion in trasgenic mice and consistenly expressed in their milk throughout the generations, although there was a little variation in the transmission frequency and expression level of the transgene between generations.

  • PDF

A Study on the Transmission of a Transgene in the Offspring of Transgenic Mice (형질전환 생쥐의 후손에서 외래 유전자의 유전성에 대한 연구)

  • 염행철
    • Korean Journal of Animal Reproduction
    • /
    • v.20 no.4
    • /
    • pp.453-458
    • /
    • 1997
  • It is known that the incorporation of genes into transgenic mice is generally stable and is p passed on to succeeding generations in a Mendelian fashion. In this report, transgenic mice were set as a model to evaluate whether the transgenes are transmitted in a Mendelian principle in a successive generations and how they are tran s smitted into their offspring. A 3.0 kb linear DNA fragment, containing the MMTV LTR, bovine aSI casein cDNA and SV 40 splicing and polyadenylation site; was microinjected into fertilized mouse embryos. The tail DNAs of the resulting pups were subjected to dot and Southern hybridizations to screen transgenic founders. The DNAs of their offspring were anlyzed by PCR to confirm the transmission of the transgene from F0. Out of 72 live pups four pups (5.6%), 3 males and 1 female, were positive for the transgene. The rates of transmission from F0 into F1 were 33.3, 7.7, 0, and 62.5%. Those from F1 into F2 were 63.6, 5.9, and 68.8% and those from F2 into F3 were 85.7, and 88.2%. In this report, the transmission pattern of transgenes in transgenic mice into their offspring was demonstrated. It either follows or does not follow in a Mendelian fashion. Deletion or loss of the transgenes from F0 in some lines became apparant to the succeeding generations.

  • PDF

Transmission and Death Rates in Transgenic Mice Containing Growth Hormone Receptor Gene (성장호르몬수용체 유전자를 지닌 형질전환생쥐의 세대전달율 및 치사율)

  • Kim, H.J.;Jin, D.I.
    • Korean Journal of Animal Reproduction
    • /
    • v.25 no.1
    • /
    • pp.85-90
    • /
    • 2001
  • To study the signaling effect of growth hormone (GH) in vivo on animal physiology, transgenic mice containing GH Receptor (GHR) gene fused to metallothionein promoter were produced by DNA microinjection into one-cell stage embryos. Three founder mice were produced with transgenic mice with approximately 4~6 copies of GHR genes and transgene was transmitted into the progeny. The founder mice were mated with normal mice to produce F$_1$ mice, and intergation and transmission of transgene were checked by polymerase chain reaction and Southern blot methods. Transmission rate of GHR transgenic mice were 20~50% in F$_1$ generation and 50% in F$_2$ generation which means that some founder mice were mosaic and transgene in F$_1$ mice was transmitted to F$_2$ progeny with Mendelian ratio. Death rate of GHR transgenic mice after birth was about 10~30% in F$_1$ and F$_2$ progenies indicating that GHR gene may affect death of transgnenic progeny.

  • PDF

Growth Rates of Transgenic Mice Containing Growth Hormone Receptor Gene

  • Kim, H. J;K. Naruse;S. M. Chang;K. S. Im;Lee, S. H.;Park, C. S.;D. I. Jin
    • Korean Journal of Animal Reproduction
    • /
    • v.27 no.4
    • /
    • pp.333-338
    • /
    • 2003
  • Transgenic mice containing GH Receptor (GHR) gene fused to metallothionein promoter were analyzed to evaluate effect of GHR expression on growth in vivo. Three founder mice lines contained copies of GHR transgene and transmitted these genes into F$_1$ and F$_2$ progenies. The mRNA expression of transgene was identified using RT-PCR with GHR genes in tissues. To analyze the effects of transgenes on growth performance, body weights of pups were measured at 4, 10 and 14 weeks after birth. The body weight of transgenic mice was higher compared with that of non-transgenic control mice regardless of sex (P<0.05). Body weights between transgenic and non-transgenic mice were increased with aging. Overall, GHR transgenic mice tended to grow about 10 to 15 % faster than non-transgenic mice without any pathological defects.

Novel Disease Model of Chronic Neutrophilic Leukemia: by Using the Tet-off System

  • Park, Jun-Hong;Lee, Young-Soon;Ryoo, Zae-Young
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.107-107
    • /
    • 2003
  • The activation of protooncogenes or the inactivation of their gene products may be a specific and effective functional study for human neoplasia. To examine this possibility, we have used the tetracycline regulatory system to generate transgenic mice that conditionally express the HccR-2 protooncogene in vivo. The new human cervical cancer protooncogene (HccR-2) was detected from cervical cancer cell line. To elucidate its biological functions, we generated transgenic mice that expressed the HccR-2 gene. The sustained expression of the HccR-2 transgene culminated chronic neutrophilic leukemia (CNL). CNL is a rare chronic myeloproliferative disorder that presents as a sustained, mature neutrophilic leukocytosis with few or no circulating immature granulocytes, the absence of peripheral blood monocytosis, basophilia, or eosinophilia, and infiltration of neutrophils at the liver, spleen and kidney. Mice expressing the HccR-2 and tetracycline-transactivating protein (tTa) transgene were found to have altered myeloid development that was characterized by increased percentages of mature neutrophil and band form neutrophil in the peripheral blood, liver and spleen. Activation of the transgene causes CNL. In our model, expression of HccR-2 transgene mice was similar in many respects to the human CNL. This model will be valuable not only for investigating the biological properties of the HccR-2 and other protooncogenes in vivo but also for analyzing the mechanism involved in the progression of CNL.

  • PDF

Expression of Human Lactoferrin in the Mammary Glands of Transgenic Mice using Regulatory Elements of Rat $\beta$-Casein Gene (흰쥐 베타-카제인 유전자의 발현조절 부위를 이용하여 유선에서 사람 락토페린을 발현하는 형질전환 생쥐의 개발)

  • 김선정;이고운;배수경;조용연;한용만;이철상;이경광;유대열
    • Korean Journal of Animal Reproduction
    • /
    • v.18 no.2
    • /
    • pp.133-139
    • /
    • 1994
  • Two human lactoferrin expression vectors(pCChcLf and pCChcLf-1) were constructed using rat $\beta$-casein gene and human lactoferrin cDNA. The recombinant DNAs containing human lactoferrin cDNA were microinjected into the fertilized eggs of hybrid mice (BDF1 : C57BL$\times$DBA) and the DNA-injected eggs were treansferred into the oviducts of foster mothers. Genomic DNAs were isolated from the tails of mice born from the microinjected eggs and analyzed by Southern blot analysis. As a result, 5 and 9 transgenic mice with CChcLf and CChcLf-1 gene were produced, respectively. To determine tissue-specificity of transgene expression, Northern blot analysis was performed. Female transgenic mice were killed at day 10 of lactation and total RNAs from various tissues were isolated. Based on Northern blot analysis, it was shown that transgene was mainly expressed in the mammary glands of transgenic mice. In addition, the human lactoferrin in milk was detected by enzyme-linked immunosorbent assay. For this study, milk was obtained from the mammary glands of the transgenic mice at day 10 of lactation. In line #2 of CChcLf and line #7 of CChcLf-1 transgenic mice, human lactoferrin was secreted into the milk at concentration levels of 340ng/ml and 60ng/ml, respectively.

  • PDF

Introduction of tmie Gene Can Recover the Hearing Impairment and Abnormal Behavior in the Circling Mouse

  • Shin, Mi-Jung;Park, Seo-Jin;Pare, Hum Dai;Ryoo, Zae-Young
    • Reproductive and Developmental Biology
    • /
    • v.34 no.2
    • /
    • pp.63-71
    • /
    • 2010
  • The spontaneous mutant circling mouse (cir/cir) shows a circling behavior and hearing loss. We produced transgenic mice overexpressing transmembrane inner ear (tmie) gene, the causative gene, for the phenotypic rescue of the circling mouse. Through the continuous breeding with circling mice, the cir/cir homozygous mice carrying the transgene (cir/cir-tg) were produced. The rescued cir/cir-tg mice were able to swim in the water with proper orientation and did not show any circling behavior like wild type mice. Western blot and immunohistochemical analysis exhibited that the transgenic tmie was expressed in the inner ear. Inner and outer hair cells were recovered in the cochlea and spiral ganglion neurons were also recovered in the rescued mice. Auditory brainstem response (ABR) test demonstrated that the cir/cir-tg mice are able to respond to sound. This study demonstrates that tmie transgene can recover the hearing impairment and abnormal behavior in the circling mouse.

Production of the Novel Disease Animal Model by Used Tet-off System

  • Park, Jun-Hong;Kim, Kil-Soo;Lee, Eun-Ju;Kim, Myoung-Ok;Kim, Sung-Hyun;Kyoungin-Cho;Jung, Boo-Kyung;Kim, Hee-Chul;Sol ha Hwang
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.54-54
    • /
    • 2003
  • The activation of protooncogenes or the inactivation of their gene products may be a specific and effective functional study for human neoplasia. To examine this possibility, we have used the tetracycline regulatory system to generate transgenic mice that conditionally express the HccR-2 protooncogene in vivo. The new human cervical cancer protooncogene (HccR-2) was detected from cervical cancer cell line. To elucidate its biological functions, we generated transgenic mice that expressed the HccR-2 gene. The sustained expression of the HccR-2 transgene culminated chronic neutrophilic leukemia (CNL). CNL is a rare chronic myeloproliferative disorder that presents as a sustained, mature neutrophilic leukocytosis with few or no circulating immature granulocytes, the absence of peripheral blood monocytosis, basophilia, or eosinophilia, and infiltration of neutrophils at the liver, spleen and kidney. Mice expressing the HccR-2 and tetracycline-transactivating protein (tTa) transgene were found to have altered myeloid development that was characterized by increased percentages of mature neutrophil and band form neutrophil in the peripheral blood, liver and spleen. Activation of the transgene causes CNL. In our model, expression of HccR-2 transgene mice was similar in many respects to the human CNL. This model will be valuable not only for investigating the biological properties of the HccR-2 and other protooncogenes in vivo but also for analyzing the mechanism involved in the progression of CNL.

  • PDF

Analysis of Transgenic Mouse, for the Production of Immunodeficiency Animals (면역결핍동물의 생산을 위한 형질전환생쥐의 분석)

  • 나루세겐지;양정희;이승현;최화식;이성호;박창식;진동일
    • Korean Journal of Animal Reproduction
    • /
    • v.27 no.2
    • /
    • pp.179-185
    • /
    • 2003
  • To determine whether the diphtheria toxin-A (DT) gene disrupts development of thymocytes in transgenic animal, the DT-A gene was used for the production of transgenic mice directed by proximal Ick promoter sequences. Two transgenic founder mice that contained several copies of transgene were produced by DNA microinjection and integration of transgene in transgenic mice was confirmed by PCR and Southern blotting analysis. Transgenic $F_1$ and $F_2$ mice were produced by outbreeding of founder and $F_1$ mice to investigate expression of transgene and phenotypes in transgneic mice. Expression of the diphtheria toxin gene was confirmed in thymus, spleen and liver of transgenic mice by RT-PCR. In circulating blood of transgenic mice, lower number of circulating white blood cells and platelets were observed compared with that of normal mice. In addition, transgneic mice had reduced number of circulating peripheral T-cells analyzed by FACS with anti-CD3 antibody. The data in these transgenic mice indicate that DT gene can play a disruptive role in developing thymocytes of transgenic mice resulted in lower number of T-cells that can be applicable to a wide range of tissues in other animals.

Expression of the Transgene is Consistently Inherited to High Numbers of Generations and Independent on Its Source

  • Zheng, Zhen-Yu;Oh, Keon-Bong;Koo, Deog-Bon;Han, Yong-Mahn;Lee, Kyung-Kwang
    • Reproductive and Developmental Biology
    • /
    • v.32 no.1
    • /
    • pp.39-43
    • /
    • 2008
  • Most studies on transgenic bioreactors have focused on expression levels of interest genes. In this study we examined whether transgenic bioreactors would inherit expression level of the Oansgene to long-term generations independently of transgene sources. We employed three transgenic mice, which were separately reported, carrying different transgenes and copy numbers, 27 kb of hLF and 22 kb of hIL-10 genomic sequences, and 1.3 kb of hTPO cDNA, respectively. Three females of the transgenic lineages crossbred with a wild-type male up to 20 generations to test transgenic frequencies of their progenies and to determine expression levels of the transgenes. Ultimately, transmission rates of kLF, hIL-10, and hTPO were $64.3{\pm}7.0$, $59.3{\pm}9.8$, and $56.1{\pm}9.7$, respectively, appeared following Mendelian pattern of inheritance. Notably, we found that levels of expressions of hLF, hIL-10, and hTPO in milk were sustained to high numbers of generations. No transgene silencing of expression was observed in every generations of all transgenic mice. In conclusion, we suggest that once established animal bioreactors could consistently transmit the transgene to continual generations, without loss of expressional activity, independently of transgene sources.