• 제목/요약/키워드: Transforming growth factor-beta type II receptor

검색결과 13건 처리시간 0.018초

A Single Nucleotide Polymorphism in Transforming Growth Factor-$\beta$ type II Receptor of the Rat

  • Ryu, Doug-Young
    • Toxicological Research
    • /
    • 제16권1호
    • /
    • pp.59-61
    • /
    • 2000
  • A single nucleotide polymorphism in the transforming growth factor-$\beta$ type II receptor (TGE$\beta$RII) gene of the rat was studied. TGF$\beta$RII is a tumor suppressor that is frequently inactivated by mutation in human colon cancers. A novel nucleotide polymorphism of G to A(or A to G), which causes a silent mutation at codon 129, was found in G:C rich sequence in the TGF$\beta$RII gene of Sprague-Dawley rats. The results suggest that genetic polymorphism occures without a strain of the laboratory animal.

  • PDF

TGF-beta1, and TGF-beta Receptor Type I and Type II are present in Bovine Embryos

  • Kim, B. K.;H. J. Chung;Park, J. H.;J. H. Woo;Park, M. Y.;H. H. Seong;W. K. Chang
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2003년도 학술발표대회 발표논문초록집
    • /
    • pp.69-69
    • /
    • 2003
  • Although effect of TGF$\beta$$_1$ on preimplantation embryo development was reported at mice, little information relevant to this subject is known in bovine. The objectives of this study were to investigate TGF$\beta$$_1$, and TGF$\beta$$_1$ receptors type I and II expression, known as important factors in the embryo development, at unfertilized oocytes and fertilized embryos that will be used as basic data to be compared to NT embryos. We postulated that TGF$\beta$$_1$ may have a beneficial effect on the preimplantation embryo and show different expression patterns as embryo stages change. We have used immunocytochemistry to investigate the presence in unfertilized oocytes and preimplantation embryos of TGF$\beta$$_1$ and the essential components of the TGF$\beta$$_1$ signalling pathway, TGF$\beta$$_1$ receptors type I and II. We found that both receptors, as well as TGF$\beta$$_1$, were present in the unfertilized oocytes. This indicates that TGF$\beta$$_1$, is a maternally expressed protein. At the morulae and blastocyst stages the TGF$\beta$$_1$ receptor type II was not present, but the TGF$\beta$$_1$ receptor type I was present at both stages and we can confirm the TGF$\beta$$_1$ expression of high level at 8-cell stage. These findings support our hypothesis that the TGF$\beta$$_1$, and TGF$\beta$$_1$ receptors may interact with the oocyte and preimplantation embryo, and that TGF$\beta$$_1$ signalling may be important for the development of the oocyte and the preimplahtation embryo.

  • PDF

Inhibitors of DNA methylation support TGF-β1-induced IL11 expression in gingival fibroblasts

  • Sufaru, Irina-Georgeta;Beikircher, Gabriel;Weinhaeusel, Andreas;Gruber, Reinhard
    • Journal of Periodontal and Implant Science
    • /
    • 제47권2호
    • /
    • pp.66-76
    • /
    • 2017
  • Purpose: Oral wound healing requires gingival fibroblasts to respond to local growth factors. Epigenetic silencing through DNA methylation can potentially decrease the responsiveness of gingival fibroblasts to local growth factors. In this study, our aim was to determine whether the inhibition of DNA methylation sensitized gingival fibroblasts to transforming growth factor-${\beta}1$ (TGF-${\beta}1$). Methods: Gingival fibroblasts were exposed to 5-aza-2'-deoxycytidine (5-aza), a clinically approved demethylating agent, before stimulation with TGF-${\beta}1$. Gene expression changes were evaluated using quantitative polymerase chain reaction (PCR) analysis. DNA methylation was detected by methylation-sensitive restriction enzymes and PCR amplification. Results: We found that 5-aza enhanced TGF-${\beta}1$-induced interleukin-11 (IL11) expression in gingival fibroblasts 2.37-fold (P=0.008). 5-aza had no significant effects on the expression of proteoglycan 4 (PRG4) and NADPH oxidase 4 (NOX4). Consistent with this, 5-aza caused demethylation of the IL11 gene commonly next to a guanosine (CpG) island in gingival fibroblasts. The TGF-${\beta}$ type I receptor kinase inhibitor SB431542 impeded the changes in IL11 expression, indicating that the effects of 5-aza require TGF-${\beta}$ signaling. 5-aza moderately increased the expression of TGF-${\beta}$ type II receptor (1.40-fold; P=0.009), possibly enhancing the responsiveness of fibroblasts to TGF-${\beta}1$. As part of the feedback response, 5-aza increased the expression of the DNA methyltransferases 1 (DNMT1) (P=0.005) and DNMT3B (P=0.002), which are enzymes responsible for gene methylation. Conclusions: These in vitro data suggest that the inhibition of DNA methylation by 5-aza supports TGF-${\beta}$-induced IL11 expression in gingival fibroblasts.

A sporadic case of Loeys-Dietz syndrome type I with two novel mutations of the TGFBR2 gene

  • Ha, Jung-Sook;Kim, Yeo-Hyang
    • Clinical and Experimental Pediatrics
    • /
    • 제54권6호
    • /
    • pp.272-275
    • /
    • 2011
  • A recently recognized connective tissue disorder, Loeys-Dietz syndrome (LDS) is a genetic aortic aneurysm syndrome caused by mutations in the transforming growth factor-receptor type I or II gene (TGFBR1 or TGFBR2). They have distinctive phenotypic abnormalities including widely spaced eyes (hypertelorism), bifid uvula or cleft palate, and arterial tortuosity with aortic aneurysm or dissection throughout the arterial tree. LDS is characterized by aggressive and rapid progression of aortic aneurysm. Therefore, the patients with distinct phenotype, marked aortic dilatation and aneurysm at early age should be suspected to be affected by LDS and rapid TGFBR gene analysis should be done. We report one child diagnosed as LDS due to typical phenotypes and two novel missense mutations of the TGFBR2 gene (c.1526G>T and c.1528A>T).

Transforming growth factor beta receptor II polymorphisms are associated with Kawasaki disease

  • Choi, Yu-Mi;Shim, Kye-Sik;Yoon, Kyung-Lim;Han, Mi-Young;Cha, Sung-Ho;Kim, Su-Kang;Jung, Joo-Ho
    • Clinical and Experimental Pediatrics
    • /
    • 제55권1호
    • /
    • pp.18-23
    • /
    • 2012
  • Purpose: Transforming growth factor beta receptor 2 ($TGFBR2$) is a tumor suppressor gene that plays a role in the differentiation of striated cells and remodeling of coronary arteries. Single nucleotide polymorphisms (SNPs) of this gene are associated with Marfan syndrome and sudden death in patients with coronary artery disease. Cardiovascular remodeling and T cell activation of $TGFBR2$ gene suggest that the $TGFBR2$ gene SNPs are related to the pathogenesis of Kawasaki disease (KD) and coronary artery lesion (CAL). Methods: The subjects were 105 patients with KD and 500 healthy adults as controls. Mean age of KD group was 32 months age and 26.6% of those had CAL. We selected $TGFBR2$ gene SNPs from serum and performed direct sequencing. Results: The sequences of the eleven SNPs in the $TGFBR2$ gene were compared between the KD group and controls. Three SNPs (rs1495592, rs6550004, rs795430) were associated with development of KD ($P$=0.019, $P$=0.026, $P$=0.016, respectively). One SNP (rs1495592) was associated with CAL in KD group ($P$=0.022). Conclusion: Eleven SNPs in $TGFBR2$ gene were identified at that time the genome wide association. But, with the change of the data base, only six SNPs remained associated with the $TGFBR2$ gene. One of the six SNPs (rs6550004) was associated with development of KD. One SNP associated with CAL (rs1495592) was disassociated from the $TGFBR2$ gene. The other five SNPs were not functionally identified, but these SNPs are notable because the data base is changing. Further studies involving larger group of patients with KD are needed.

Expression Patterns of $TGF-{\beta}1,\;TGF-{\beta}$ Receptor Type I, II and Substrate Proteins Smad 2, 3, 4 and 7 in Bovine Oocytes and Embryos

  • Chung, Hak-Jae;Kim, Bong-Ki;Kim, Jong-Mu;Lee, Hyun-Gi;Han, Joo-Hee;Kim, Nam-Hyung;Park, Jin-Ki;Seong, Hwan-Hoo;Yang, Boh-Suk;Chang, Won-Kyong;Ko, Yeoung-Gyu
    • Reproductive and Developmental Biology
    • /
    • 제30권4호
    • /
    • pp.271-277
    • /
    • 2006
  • Transforming growth $factor-{\beta}\;(TGF-{\beta})$ has been shown to have a positive effect on in vitro fertilization (IVF) and has been reported to stimulate meiosis at follicular level in variety of species. The study was designed to determine the expression patterns of $TGF-{\beta}1,\;TGF-{\beta}$ receptors type I, II and Smads gene in bovine oocytes and embryos. $TGF-{\beta}1$ and their receptors were observed in the unfertilized oocytes. $TGF-{\beta}1$ and type II receptor were not expressed at the blastocyst stage, however, only type I receptor was exclusively observed at the same stage. The blastocyst stage, in particular, showed high levels of mRNA expression patterns containing a $TGF-{\beta}1$ type I receptor. The mRNA expression pattern of Smad 2 at all stages of embryonic development was similar in all respect with $TGF-{\beta}1$ type I receptor. On the contrary, Smad 3 and 4 were expressed with high and low level mRNA at the blastocyst stage. In conclusion. it is suggested that $TGF-{\beta}1$ signaling may be regarded as an important entity during the preimplantation embryo development.

Development of TGF-$\beta$ Resistance During Malignant Progression

  • Kim, Yong-Seok;Yi, Young-Suk;Choi, Shin-Geon;Kim, Seong-Jin
    • Archives of Pharmacal Research
    • /
    • 제22권1호
    • /
    • pp.1-8
    • /
    • 1999
  • Transforming growth factor-$\beta$ (TGF-$\beta$) is the prototypical multifunctional cytokine, participating in the regulation of vital cellular activities such as proliferation and differentiations as well as a number of basic physiological functions. The effects of TGF-$\beta$ are critically dependent on the expression and distribution of a family of TGF-$\beta$ receptors, the TGF-$\beta$ types I, II, and III. It is now known that a wide variety of human pathology can be caused by aberrant expression and function of these receptors. the coding sequence of the type II receptor (RII) appears to render it uniquely susceptible to DNA replication errors in the course of normal cell division. By virtue of its key role in the regulation of cell proliferation, TGF-$\beta$ RII should be considered as a tumor suppressor gene. High levels of mutation in the TGF-$\beta$ RII gene have been observed in a wide range of primarily epithelial malignancies, including colon and gastric cancer. It appears likely that mutation of the TGF-$\beta$ RII gene may be a very critical step in the pathway of carcinogenesis.

  • PDF

도인(挑仁)이 일측 신절제와 streptozotocin으로 유발된 당뇨병성 신증 Rat에 미치는 영향 (The Effects of Prunus on Diabetic Nephropathy Rats Induced by Unilateral Nephrectomy and Streptozotocin)

  • 김남규;오재선;전상윤
    • 대한한방내과학회지
    • /
    • 제35권4호
    • /
    • pp.519-531
    • /
    • 2014
  • Objectives: Diabetic nephropathy is the most common cause of end stage renal disease. Transforming growth factor (TGF)-${\beta}1$, type IV collagen, advanced glycation end-products (AGEs), and angiotensin II type 1 receptor (AT1) are the main factors of diabetic nephropathy. We investigated the effects of Prunus on renal function and histopathological changes of diabetic nephropathy rat model induced by unilateral nephrectomy and streptozotocin. Methods: Diabetes was induced in male Sprague-Dawley rats ($290{\pm}10g$) by injecting streptozotocin (55 mg/kg) into the tail vein after unilateral nephrectomy. Rats were divided into 3 groups (n=6): normal, control, and Prunus. After 8 weeks of oral administration of Prunus extract on the Prunus group from 3 days after streptozotocin injection, we checked weight, 24 hrs urine, blood biochemistry and renal tissue to evaluate renal function and histopathological changes by examining parameters including albuminuria, BUN, creatinine, cholesterol, low density lipoprotein (LDL), triglyceride, TGF-${\beta}1$, type IV collagen, AGEs, and AT1. We also measured mRNA expression of TGF-${\beta}1$, type IV collagen, AGEs, and AT1 by Real Time polymerase chain reaction (RT-PCR). Results: Prunus decreased the amount of 24 hrs proteinuria, and inhibited histopathological changes of diabetic nephropathy including the expression and accumulation of TGF-${\beta}1$, type IV collagen and AGEs which could promote development of diabetic nephropathy. Prunus also inhibited mRNA expression of TGF-${\beta}1$, type IV collagen. Conclusions: These findings suggest that Prunus might protect the renal function and inhibit the development of renal injury by regulating factors including TGF-${\beta}1$, type IV collagen, AGEs, except AT1, so Prunus can be used for diabetic patients to prevent the progression of diabetic nephropathy.

Analysis and characterization of the functional TGFβ receptors required for BMP6-induced osteogenic differentiation of mesenchymal progenitor cells

  • Zhang, Yan;Zhang, De-Ying;Zhao, Yan-Fang;Wang, Jin;He, Juan-Wen;Luo, Jinyong
    • BMB Reports
    • /
    • 제46권2호
    • /
    • pp.107-112
    • /
    • 2013
  • Although BMP6 is highly capable of inducing osteogenic differentiation of mesenchymal progenitor cells (MPCs), the molecular mechanism involved remains to be fully elucidated. Using dominant negative (dn) mutant form of type I and type II $TGF{\beta}$ receptors, we demonstrated that three dn-type I receptors (dnALK2, dnALK3, dnALK6), and three dn-type II receptors (dnBMPRII, dnActRII, dnActRIIB), effectively diminished BMP6-induced osteogenic differentiation of MPCs. These findings suggested that ALK2, ALK3, ALK6, BMPRII, ActRII and ActRIIB are essential for BMP6-induced osteogenic differentiation of MPCs. However, MPCs in this study do not express ActRIIB. Moreover, RNA interference of ALK2, ALK3, ALK6, BMPRII and ActRII inhibited BMP6-induced osteogenic differentiation in MPCs. Our results strongly suggested that BMP6-induced osteogenic differentiation of MPCs is mediated by its functional $TGF{\beta}$ receptors including ALK2, ALK3, ALK6, BMPRII, and ActRII.

Loeys-Dietz 증후군으로 진단된 젊은 여자 환자의 상행 대동맥 파열: 국내 첫 번째 증례 보고 (Ascending Aortic Rupture in a Young Woman with Loeys-Dietz Syndrome: The First Case Report in Korea)

  • 김환욱;이택연;문덕환;주석중;정철현;이재원
    • Journal of Chest Surgery
    • /
    • 제42권5호
    • /
    • pp.639-644
    • /
    • 2009
  • 대동맥 동맥류/대동맥 박리증, 두눈먼거리증, 목젖갈림증/입천장갈림증, 그리고 동맥혈관계의 이상과다 뒤틀림 등을 독특한 표현형으로 하는 Loeys-Dietz 증후군은 새로이 기술된 공격적 성향의 결체 조직 질환으로, transforming growth factor-$\beta$ receptor type 1 또는 type 2를 encoding 하는 유전자 돌연 변이가 발병 원인이다. Loeys-Dietz 증후군은 Marfan 증후군, Ehlers-Danlos 증후군 4형 등의 표현형과 일부 비슷한 형태를 공유한다. 그러나, Loeys-Dietz 증후군은 다른 질환보다 더 심한 병태생리적 특성을 가지고 있기 때문에, 임상의들은 이들 결체 조직 질환들을 감별하여야 한다. 강한 의심, 조기 진단, 예방적 수술, 그리고 지속적 영상 검사가 적절한 Loeys-Dietz 증후군 치료를 위해 실행되어야 한다. 저자들은 대동맥 파열, 목젖갈림증, 그리고 두눈먼거리증의 3징후를 가진 Loeys-Dietz 증후군의 환자를 경험하였기에 문헌고찰과 함께 보고하는 바이다.