• 제목/요약/키워드: Transformer modeling

검색결과 179건 처리시간 0.032초

Development of a Weather Prediction Device Using Transformer Models and IoT Techniques

  • Iyapo Kamoru Olarewaju;Kyung Ki Kim
    • 센서학회지
    • /
    • 제32권3호
    • /
    • pp.164-168
    • /
    • 2023
  • Accurate and reliable weather forecasts for temperature, relative humidity, and precipitation using advanced transformer models and IoT are essential in various fields related to global climate change. We propose a novel weather prediction device that integrates state-of-the-art transformer models and IoT techniques to improve prediction accuracy and real-time processing. The proposed system demonstrated high reliability and performance, offering valuable insights for industries and sectors that rely on accurate weather information, including agriculture, transportation, and emergency response planning. The integration of transformer models with the IoT signifies a substantial advancement in weather and climate modeling.

무전극램프의 출력전력 변화에 따른 새로운 모델링 기법 (New Modeling Method for an Electrodeless Fluorescent Lamp Using the Relation of Lamp Output Power and the Modeling Coefficients of the Lamp)

  • 임병노;장목순;신동석;박종연
    • 전기학회논문지
    • /
    • 제56권9호
    • /
    • pp.1626-1631
    • /
    • 2007
  • This paper presents a new modeling method using lamp output power and the modeling coefficients of the lamp. The proposed method utilizes the lamp modeling coefficients such as equivalent impedance Z(p), coupling coefficient of the transformer k(p), turns ratio of the transformer n(p), and plasma resistance Rp(p) as a function of lamp output power. The equivalent impedance Z(p) was developed from the equivalent resistance Req(p) and equivalent inductance Leq(p) of the lamp. Simulation and experimental results of the proposed model are presented in order to validate the proposed method. The modeling method can use to design an impedance matching circuit for a Class-D inverter.

Transformer Core Model and Parameter Estimation for ATP

  • Cho Sung-Don
    • KIEE International Transactions on Power Engineering
    • /
    • 제5A권4호
    • /
    • pp.385-389
    • /
    • 2005
  • Power transformers would appear to be simple. However, due to their nonlinear and frequency-dependent behaviors, they can be one of the most complex system components to model. It is imperative that the applied models be appropriate for the range of frequencies and excitation levels that the system experiences. Transformer modeling is not a mature field and newer improved models must be made available in ATP packages. Further, there is a lack of published guidance on recommended modeling approaches. And there is typically not enough detailed design or test information available to determine the parameters for a given model. The purpose of this paper is to develop improved transformer core models for ATP and parameter estimation methods that can efficiently utilize the limited available information such as factory test reports.

이방성과 비선형성을 고려한 삼상 변압기의 TLM-FEM해석 (Analysis of the Three-Phase Transformer Considering the Non-Linear and Anisotropic Properties using the Transmission Line Modeling Method and FEM)

  • 임창환;김홍규;이창환;정현교
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권10호
    • /
    • pp.523-529
    • /
    • 1999
  • In the case of the large power transformer, the grain-oriented material is usually used. So, to obtain more accurate results, anisotropy and non-linearity of the material must be considered. The Newton-Raphson(NR) method is generally used for analyzing these non-linear properties, but it consumes so much time, especially when the number of nodes is large or the shape of the model is complex. The transmission line modeling (TLM) method is successfully adopted to the analysis of non-linear properties with FEM, but it has not been adopted to the analysis of the anisotropic material. In this paper, the formulation of the TLM method considering anisotropy is developed and the adoption to the 3-phase transformer is presented.

  • PDF

국내 교류 전기철도 급전계통 보호용 과전류 계전기 모델링 및 과부하 보호 협조에 관한 연구 (A Study on the Overcurrent Relay Modeling and Protective Coordination for Overload in Domestic AC Electrical Railway System)

  • 김현동;조규정;허승훈;김철환
    • 전기학회논문지
    • /
    • 제65권7호
    • /
    • pp.1121-1127
    • /
    • 2016
  • In this paper, modeling of overcurrent relay(OCR) to protect domestic AC electric railway Auto Transformer(AT) feeding system and operation characteristic analysis on overload condition are described. The target system of this paper is actual site where overload trip of circuit breaker occurs frequently. Because this AT feeding system is made of parallel single track which had a load(electric train) respectively, and is connected with only T phase of Scott Transformer. In addition, this system has been feeding 66kV voltage by KEPCO, not 154kV. We focus on protective coordination of Scott Transformer primary side and secondary side OCR for Korea single track AC electrical railway system in operation currently. We modeled single track AT feeding system and OCR. Also we performed faults and overload analysis for verification of OCR's setting values and system modeling. To analyze above mentioned research, we used PSCAD/EMTDC software tool.

Simulink를 이용한 교류 급전변전소의 스코트변압기 모델링 (Scott Transformer Modeling using Simulink on the AC Substation)

  • 김태근;박영;이종우
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.2317-2322
    • /
    • 2011
  • In three-phase power, when the power is supplied to the single phase load, there is the unbalance of load in the three-phase power. So the scott transformer is used in the power system to supply a single phase load in three-phase power without the unbalance of loads. Especially, the scott transformer is used in the AC substation of electric railroad. Two single phase transformers are combined by T-wiring in the scott transformer. So, two single phase voltage is provided by differing $90^{\circ}$ phase in three-phase power. The selection of related equipment and correction of protective relay are not easy from characteristic of the scott transformer when shunt and ground faults occur. In this paper, electric model of the scott transformer is suggested and the current of the scott transformer in shunt and ground faults is analyzed. Also, the scott transformer model is demonstrated by using Sinulink.

  • PDF

전기철도의 교류 급전변전소에서 PSIM을 이용한 스코트변압기 모델링 (Scott Transformer Modeling using PSIM on the AC Substation in the Elect ric Railroad)

  • 김성대;최규형
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1892-1897
    • /
    • 2010
  • In three-phase power, when the power is supplied to the single phase load, there is the unbalance of load in the three-phase power. So the scott transformer is used in the power system to supply a single phase load in three-phase power without the unbalance of loads. Especially, the scott transformer is used in the AC substation of electric railroad. Two single phase transformers are combined by T-wiring in the scott transformer. So, two single phase voltage is provided by differing $90^{\circ}$ phase in three-phase power. The selection of related equipment and correction of protective relay are not easy from characteristic of the scott transformer when shunt and ground faults occur. PSIM(Power Electronics Simulator) is optimal simulation software in field of the power electronics and provide the simple and convenient user interface. In this paper, electric model of the scott transformer is suggested and the current of the scott transformer in shunt and ground faults is analyzed. Also, the scott transformer model is demonstrated by using PSIM.

  • PDF

PSCAD/EMTDC를 이용한 초전도 변압기의 모델링과 시뮬레이션 (Modeling and Simulation of Superconducting Transformer using PSCAD/EMTDC)

  • 임채형;박민원;유인근
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제6권1호
    • /
    • pp.33-38
    • /
    • 2004
  • This paper presents an effective simulation method for the high temperature superconducting (HTS) transformer using PSCAD/ EMTDC. Although researches and developments are performed for the HTS technologies, problems such as AC loss and quench phenomenon need to be solved for efficient design of HTS transformer. In addition, pre-study on the HTS transformer is a sort of time and cost consuming work, thus it is very worthy or being analyzing the characteristics of the HTS transformer in advance through a proper simulation method. It is very important to analyze the HTS devices by the simulation for seeking suitable and reasonable parameters for the practical application of those apparatuses in advance. A software- based component is suggested for- the simulation of the HTS transformer using PSCAD/ EMTDC and the numerical results are analyzed in detail in this paper.

Analysis of the Contactless Power Transfer System Using Modeling and Analysis of the Contactless Transformer

  • Ryu Myung-Hyo;Kim Jong-Hyun;Baek Ju-Won;Cha Hon-Nyong
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권3호
    • /
    • pp.351-358
    • /
    • 2006
  • In this paper, the electrical characteristics of the contactless transformer is presented using the conventional coupled inductor theory. Compared with the conventional transformer, the contactless transformer has a large airgap, long primary wire and multi-secondary wire. As such, the contactless transformer has a large leakage inductance, small magnetizing inductance and poor coupling coefficient. Therefore, large magnetizing currents flow through the entire primary system due to small magnetizing inductance, resulting in low overall system efficiency. In high power applications, the contactless transformer is so bulky and heavy that it needs to be split by some light and small transformers. So, the contactless transformer needs several small transformer modules that are connected in series or parallel to transfer the primary power to the secondary one. This paper shows the analysis and measurement results of each contactless transformer module and comparison results between the series- and parallel-connection of the contactless transformer. The results are verified on the simulation based on the theoretical analysis and the 30kW experimental prototype.

변압기 영향을 포함한 고정주파수 LCL형 DC-DC 컨버터 해석 (Analysis of A Fixed Frequency LCL-type DC-DC Converter Including the Effect of High-Frequency Transformer)

  • 박상은;차한주
    • 전기학회논문지
    • /
    • 제65권1호
    • /
    • pp.81-87
    • /
    • 2016
  • An LCL-type Isolated dc-dc converter operating for constant output voltage is analyzed, including the effect of a high frequency transformer using ac complex circuit approximation. Its solution is derived and is used to obtain the characteristics of the proposed converter. The analyses show through converter modeling, phasor diagram and gain comparison that inclusion of a high frequency transformer results in introduction of magnetizing inductance and leakage inductances at conventional LCL dc-dc converter with ideal transformer. The theoretical and simulation results are presented in case of the wide variations in input voltage and load current in detail. Analysis and simulation results observed that introduction of a transformer in the dc-dc converter had considerable effect on the performance, especially in the case of low output voltage and large load.