• Title/Summary/Keyword: Transformer leakage inductance

Search Result 158, Processing Time 0.02 seconds

Single Power-conversion AC-DC Converter with High Power Factor (고역률을 갖는 단일 전력변환 AC-DC 컨버터)

  • Cho, Yong-Won;Park, Chun-Yoon;Kwon, Bong-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.23-30
    • /
    • 2014
  • This paper proposes a single power-conversion ac-dc converter with a dc-link capacitor-less and high power factor. The proposed converter is derived by integrating a full-bridge diode rectifier and a series-resonant active-clamp dc-dc converter. To obtain a high power factor without a power factor correction circuit, this paper proposes a suitable control algorithm for the proposed converter. The proposed converter provides single power-conversion by using the proposed control algorithm for both power factor correction and output control. Also, the active-clamp circuit clamps the surge voltage of switches and recycles the energy stored in the leakage inductance of the transformer. Moreover, it provides zero-voltage turn-on switching of the switches. Also, a series-resonant circuit of the output-voltage doubler removes the reverse-recovery problem of the output diodes. The proposed converter provides maximum power factor of 0.995 and maximum efficiency of 95.1% at the full-load. The operation principle of the converter is analyzed and verified. Experimental results for a 400W ac-dc converter at a constant switching frequency of 50kHz are obtained to show the performance of the proposed converter.

Development Of High Efficiency Boost DC/DC Converter For EV (전기자동차용 고효율 승압형 DC/DC 컨버터 개발)

  • Choi, Mi-Seon;Song, Sung-Geun;Park, Sung-Jun;Kim, Dae-Kyong;Kim, Yong-Gu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.127-133
    • /
    • 2010
  • In the paper, reactorless high efficiency boost DC/DC converter for EV is proposed. In proposed converter, improves efficiency because decrease power loss when the switches are turned on/off using zero current switching (ZCS) at all switch of primary full bridge. By replacing reactance ingredients of L-C resonance circuit for ZCS with leakage inductance ingredients of high frequency transformer, it reduces system size and expense because of not add special reactor. For validity verification of proposed converter, in the paper implements simulation using PSIM and perform experiment by making 5KW DC/DC converter. In experimental results, efficiency of proposed converter conformed superiority.

Pulse-width Adjustment Strategy for Improving the Dynamic Inductor Current Response Performance of a Novel Bidirectional DC-DC Boost Converter

  • Li, Mingyue;Yan, Peimin
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.34-44
    • /
    • 2018
  • This paper presents a pulse-width adjustment (PWA) strategy for a novel bidirectional DC-DC boost converter to improve the performance of the dynamic inductor current response. This novel converter consists of three main components: a full-bridge converter (FBC), a high-frequency isolated transformer with large leakage inductance, and a three-level voltage-doubler rectifier (VDR). A number of scholars have analyzed the principles, such as the soft-switching performance and high-efficiency characteristic, of this converter based on pulse-width modulation plus phase-shift (PPS) control. It turns out that this converter is suitable for energy storage applications and exhibits good performance. However, the dynamic inductor current response processes of control variable adjustment is not analyzed in this converter. In fact, dc component may occur in the inductor current during its dynamic response process, which can influence the stability and reliability of the converter system. The dynamic responses under different operating modes of a conventional feedforward control are discussed in this paper. And a PWA strategy is proposed to enhance the dynamic inductor current response performance of the converter. This paper gives a detailed design and implementation of the PWA strategy. The proposed strategy is verified through a series of simulation and experimental results.

Performance Improvement of Isolated High Voltage Full Bridge Converter Using Voltage Doubler

  • Lee, Hee-Jun;Shin, Soo-Cheol;Hong, Seok-Jin;Hyun, Seung-Wook;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2224-2236
    • /
    • 2014
  • The performance of an isolated high voltage full bridge converter is improved using a voltage doubler. In a conventional high voltage full bridge converter, the diode of the transformer secondary voltage undergoes a voltage spike due to the leakage inductance of the transformer and the resonance occurring with the parasitic capacitance of the diode. In addition, in the phase shift control, conduction loss largely increases from the freewheeling mode because of the circulating current. The efficiency of the converter is thus reduced. However, in the proposed converter, the high voltage dual converter consists of a voltage doubler because the circulating current of the converter is reduced to increase efficiency. On the other hand, in the proposed converter, an input current is distributed when using parallel input / serial output and the output voltage can be doubled. However, the voltages in the 2 serial DC links might be unbalanced due to line impedance, passive and active components impedance, and sensor error. Considering these problems, DC injection is performed due to the complementary operations of half bridge inverters as well as the disadvantage of the unbalance in the DC link. Therefore, the serial output of the converter needs to control the balance of the algorithm. In this paper, the performance of the conventional converter is improved and a balance control algorithm is proposed for the proposed converter. Also, the system of the 1.5[kW] PCS is verified through an experiment examining the operation and stability.

Single-Power-Conversion Series-Resonant AC-DC Converter with High Efficiency (고효율을 갖는 단일 전력변환 직렬 공진형 AC-DC 컨버터)

  • Jeong, Seo-Gwang;Cha, Woo-Jun;Lee, Sung-Ho;Kwon, Bong-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.224-230
    • /
    • 2016
  • In this study, a single-power-conversion series-resonant ac-dc converter with high efficiency and high power factor is proposed. The proposed ac-dc converter consists of single-ended primary-inductor converter with an active-clamp circuit and a voltage doubler with series-resonant circuit. The active-clamp circuit clamps the surge voltage and provides zero-voltage switching of the main switch. The series-resonant circuit consists of leakage inductance $L_{lk}$ of the transformer and resonant capacitors $ C_{r1}$ and $ C_{r2}$. This circuit also provides zero-current switching of output diodes $D_1$ and $D_2$. Thus, the switching loss of switches and reverse-recovery loss of output diodes are considerably reduced. The proposed ac-dc converter also achieves high power factor using the proposed control algorithm without the addition of a power factor correction circuit and a dc-link electrolytic capacitor. A detailed theoretical analysis and the experimental results for a 1kW prototype are discussed.

High Efficiency Resonant Asymmetrical Half-Bridge Flyback Converter (고효율 공진형 비대칭 하프브리지 플라이백컨버터)

  • Jeong, Gang-Youl;Yoo, Doo-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.81-94
    • /
    • 2010
  • This paper presents a high efficiency resonant asymmetrical half-bridge flyback converter. The primary half-bridge circuit of the converter operates by a soft-switching type using the asymmetrical pulse-width modulation (PWM) method with the resonant capacitance and transformer leakage inductance. The secondary flyback circuit of the proposed converter utilizes a synchronous rectifier, which operates by a new voltage-driven method with a simple drive circuit. Thus the proposed converter improves the total efficiency. This paper explains the operational principle of the proposed converter by each mode and shows the converter design consideration and a design example for the prototype converter, respectively. After that, the proposed simple driving technique of the synchronous rectifier by a voltage-driven method is explained, briefly. The designed prototype converter has wide input voltage (AC $V_{in,rms}$=75~265[V]), 5[V] DC output voltage, and 100[W] output power. To verify the excellent performance of the proposed converter, the designed prototype is implemented and experimented. The good performance of the proposed converter is shown through the experimental results.

Dynamic Analysis and Control Loop Design of ZVS-FB PWM DC/DC Converter (ZVS-FB PWM DC/DC 변환기의 동특성 해석 및 제어기 설계)

  • 이득기;윤길문;차영길;김흥근
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.231-239
    • /
    • 1998
  • This paper presents the dynamic analysis and control loop design of a zero voltage switching full bridge (ZVS-FB) PWM DC/DC converter. The small-signal model is derived incorporating the effects of phase shift control and the utilization of transformer leakage inductance and power FET junction capacitance to achieve zero voltage resonant switching. These effects are modeled by introducing additional feedforward and feedback terms for duty cycle modulation. Based on the results of the small-signal analysis, the control loop is designed using a simple two-pole one-zero compensation circuit. To show the validity of the design procedures, the small signal analysis of the closed loop system is carried out and the potential of the zero voltage switching and the superiority of the dynamic characteristics are verified through the experiment with a 2 kW prototype converter.

  • PDF

Pulsed Laser System of Ultra-scan Way for Uterus Rehabilitation Treatment (자궁 재활치료를 위한 울트라-스캔 방식의 펄스형 레이저시스템)

  • Kim, Whi-Young
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.6
    • /
    • pp.256-265
    • /
    • 2009
  • Laser output becomes output adjustment from 20 w to 100 w consecutively and time of exposure is available adjustment through water plant in 0.01 seconds. Pulse action can intercept laser beam periodically and supermarket pulse 0.1 $\sim$ between 1ms discharge consist and momentary laser output is increased to 5 $\sim$ 10. Specially, that must remove malignancy cell in womb nine escarps in the case of uterine cancer first of all stability of tube output about pulse by weight very, stable soft switching action area is defined without high frequency transformer leakage inductance ($L_1$) increase and additional series inductor insertion to converter the first main circuit securing zero voltage and marks of switching action in this research specially, because circulation current path of inductor ($L_f$) current is intercepted, converter the first main circuit switching component and spiritual enlightenment damage of high frequency transformer take decreasing greatly and high frequency the second stoppage department ($D_5,\;D_6$) becomes soft switching, and also, switching damage absorption quantity characteristic that can come to life again as subordinate have, and to become tube stabilization design and result that manufacture and experiment, brought result that improve of 10% than existing equipment, and if supplement as systematic late, it becomes thought to get into superior result.