• Title/Summary/Keyword: Transformer failure

Search Result 116, Processing Time 0.021 seconds

Statistical Lifetime Analysis for Large Electric Power Equipments using Failure Data (고장데이터를 이용한 대용량 전력설비 통계적 수명분석)

  • Kim, Jeong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1605-1611
    • /
    • 2017
  • In this study, the characteristic lifetime of power facilities such as power transformers and GIS were investigated as the basis of power facility asset management. It is difficult to obtain the operation and failure data of the facilities in Korea. Therefore, the number of failures of the electric power facilities was calculated from the operation data and hazard rate shown in the overseas literatures, and the statistical analysis was performed using the Weibull distribution function. As a result of extracting and analyzing the data of the UK National Grid for power transformers, the characteristic lifetime (scale parameter) of 116.45 years was considered to be a very appropriate value for power transformer management and can be used as a comparative data of the analysis of the domestic transformers. As for the GIS, based on the Bays and Bay-Years data and the hazard rate according to the operation years of the 123kV GIS in Germany, it is found out that the characteristic lifetime of GIS is not so meaningful. It is necessary to decide a maintenance strategy and lifetime expectancy considering the characteristics of the design, materials and manufacturing process of GIS.

Establishment of Diagnostic Criteria in the Preventive Diagnostic System for the Power Transformer (전력용 변압기 예방진단새스템의 진단기준치 실정)

  • Kweon Dong-Jin;Koo Kyo-Sun;Kwak Joo-Sik;Woo Jung-Wook;Kang Yeon-Wook
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.9
    • /
    • pp.449-456
    • /
    • 2005
  • The preventive diagnostic technique prevents transformers from power failure through giving alarm and observing transformers in service. And it helps to establish the plan for optimum maintenance of the transformer as well as to find location or cause of fault using accumulated data. Data detection and experience of the preventive diagnostic system need to establish the preventive diagnostic algorithm regarding interrelationship between detected data and deterioration of equipment. Therefore in-depth analysis about the preventive diagnosis system is required. KEPCO has adopted the preventive diagnostic system at nine 345kV substations since 1997. Techniques for component sensors of the preventive diagnosis system were settled but diagnosis algorithm, diagnostic criteria and practical use of accumulated data are not yet established. This paper, to build up the base of preventive diagnostic algorithm for the Power transformer. investigated the preventive diagnostic criteria for the power transformer.

Fault Diagnosis Method of Power Transformer Using FCM and SOM (FCM과 SOM을 이용한 전력용 변압기 고장진단 기법)

  • Han, Wun-Dong;Lee, Dae-Jong;Ji, Pyeong-Shik
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.3
    • /
    • pp.25-33
    • /
    • 2007
  • The unexpected failure may cause a break in power system and loss of profits. Therefore it Is important to prevent abrupt faults by monitoring the condition of power systems. In this paper, we develop intelligent diagnosis technique for predicting faults of power transformer which plays an important role in the transmission and distribution systems among the various power facilities by using FCM and SOM. More specifically, FCM is used to select the efficient training data and reducing learning process time and SOM is used to diagnosis the power transformer. The proposed technique makes it possible to measures the possibility of aging as well as the faults occurred in transformer To demonstrate the validity of proposed method, various experiments are performed and their results are presented.

Analysis for the Ferroresonance on the Transformer by Overvoltage and Prevention Measures (과전압에 의한 변압기 철공진 분석 및 방지대책)

  • Yun, Dong-Hyun;Shin, Dong-Yeol;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1543-1550
    • /
    • 2015
  • Ferroresonance is a non-linear vibrational phenomenon that is generated by the electrical interaction of the inductance component with the capacitor component of a certain capacitance as the device of the inductance component such as a transformer is saturated due to the degradation, the waveform distortion of current and voltage, and the oscillation of overcurrent and overvoltage in a system. Recently, ferroresonance was generated from the waveform distortion of current and voltage, or the overvoltage or undervoltage phenomenon caused by the nature of an electrical power system and design technology of the transformer in the three phase transformer system. Hence, in general, ferroresonance analyzed by converting to the LC equivalent circuit. However, in general, the aforementioned analytical method only applies to the resonance phenomenon that is generated by the interaction of the capacitance of bussbar and grounding, and switching as the capacitor component with PT and the transformer as the inductance component in a system. Subsequently, the condition where ferroresonance was generated since overvoltage was supplied as line voltage to the phase voltage and thus the iron core is saturated due to the interconnection between grounded and ungrounded systems could not be analyzed when single phase PT was connected in a ${\Delta}$/Y connection system. In this study, voltage swell in the configuration of grounded circuit of a step-up transformer with the ${\Delta}-{\Delta}$ connection linked to PT for control power and the ferroresonance generated by overvoltage when the line voltage of the ${\Delta}-{\Delta}$ connection was connected to the phase voltage of the grounded Y-Y connection were analyzed using PSCAD / EMTDC through the failure case of the transformer caused by ferroresonance in the system with the ${\Delta}-{\Delta}$/Y-Y connection, and subsequently, the preventive measure of ferroresonance was proposed.

A Study on the Mathematical Modeling of Failure Rates Estimation for Asset Management of the Power Transformer (전력용변압기의 자산관리를 위한 고장률 추정기법의 수학적 모델링에 관한 연구)

  • MOU, SHUAILONG;Jang, Kyung-Wook;Baek, Seung-Myung;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.1
    • /
    • pp.33-37
    • /
    • 2017
  • This paper describes the modeling of the failure rate estimation technique for applying the asset management technique to electric power facilities. There are many modeling techniques to estimate the failure rate. In this paper, the characteristics of the normal distribution, exponential distribution, weibull distribution, and piecewise linear functions are discussed. When evaluating reliability, the evaluation may be less meaningful if the sample data is insufficient. Therefore, Weibull distribution and piecewise linear function are adopted as the most suitable functions for estimating the failure rate of power facilities and the resulting failure rate function is derived.

Modal Identification and Seismic Performance Evaluation of 154kV Transformer Porcelain Bushing by Vibration Test (진동시험에 의한 154kV 변압기 부싱의 동특성 분석 및 내진성능 평가)

  • Joe, Yang-Hee;Cho, Sung-Gook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.5 s.51
    • /
    • pp.107-115
    • /
    • 2006
  • The power supply system is one of the most important infrafacilities which should maintain their inherent function during and after earthquakes. This study was performed to analyze dynamic characteristics and seismic performance of Korean typical 154kV transformer porcelain bushing. For the purpose of this study, actual 154kV porcelain bushings were selected and tested on the shaking table. The vibration tests consist of modal identification tests, seismic performance tests, and fragility tests. The sine sweep waves, artificial earthquake waves, and continuous resonant sine waves were used as shaking table motions. This paper describes the test specimens, shaking facilities, and test methods. Natural frequencies and damping ratios of the bushing have been evaluated from the experimental data. The failure mode and the performance level of the Korean transformer bushing have been first identified in this study.

Detection of Acoustic signals by PD in Test Transformer (시험용 변압기 내 부분방전의 초음파 검출에 관한 연구)

  • Kwak, Hee-Ro;Kweon, Dong-Jin;Chin, Sang-Bum;Jeon, Sang-Jun;Chung, Young-Ki;Song, Il-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1293-1295
    • /
    • 1995
  • This paper describes the detection of the ultrasonic signals reduced by barrier in test transformer. The ultrasonic signals are generated by partial discharges which cause the insulation failure of transformer. The ultrasonic signals are reduced by barrier. But it was shown that the reduced ultrasonic signals can be measured as the location of the ultrasonic signal detectors is selected properly.

  • PDF

Fault Diagnosis of Power Transformer by FCM and Euclidean Based Distance Measure (FCM과 유클리디언 기반 거리유사도에 의한 전력용 변압기의 고장진단)

  • Lee, Dae-Jong;Lee, Jong-Pil;Ji, Pyeong-Shik;Lim, Jae-Yoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1007-1016
    • /
    • 2007
  • In power system, substation facilities have become too complex and larger according to an extended power system. Also, customers require the high quality of electrical power system. However, some facilities become old and often break down unexpectedly. The unexpected failure may cause a break in power system and loss of profits. Therefore it is important to prevent abrupt faults by monitoring the condition of power systems. Among the various power facilities, power transformers play an important role in the transmission and distribution systems. In this research, we develop intelligent diagnosis technique for predicting faults of power transformer by FCM(Fuzzy c-means) and Euclidean based distance measure. The proposed technique make it possible to measures the possibility and degree of aging as well as the faults occurred in transformer. To demonstrate the validity of proposed method, various experiments are performed and their results are presented.

A Study of the Development of the Temporary Transformer System for the Replacement of Bum-out Pole Transformer (소손 주상변압기 교체를 위한 임시송전시스템 개발에 관한 연구)

  • Lee, Jung-Kyun;Yun, Young-Mo;Jeun, Si-Sik;Lee, Jae-Heon;Jeong, Dong-Ju;Park, Yong-Beom;Kim, Jeom-Sik;Jo, Seong-Mun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.43-46
    • /
    • 2009
  • This paper describes a development of the temporary transformer system and method. The failure causes are genrally divided into problems in manufacturing, mounting and operating. To replace the bum-out pole transformers developed various facilities, power cable clamp, the control panel of self-sensing device and voltage connection box etc. That is more effective to establish the emergency transmission systems for the non interruption replacement of distribution transformers.

  • PDF

Implementation of a Condition Monitoring System for Mold Transformers in DC Substations (DC 변전소 몰드변압기 온라인 상태 감시 시스템 구현)

  • Park, Young;Jung, Ho-Sung;Park, Chul-Min;Jang, Soon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1788-1794
    • /
    • 2011
  • The mold transformer is a complex and critical component of DC substations in Metro system. In this paper, a cost effective and intelligent condition monitoring system for mold transformers in DC substations was developed. This paper also provides an overview of the management program using PD (partial discharge) data on mold transformers. Prior to application of the proposed system to Metro DC substations, experiments were performed at the metro line substation located in Seoul and presented case studies for the use of the intelligent condition monitoring system for mold transformer in DC substations. The experiment results indicated that the developing system can be need in helping mange the risk of unexpected failure of mold type transformers.