• 제목/요약/키워드: Transformation Heat

Search Result 585, Processing Time 0.027 seconds

Preparation and Thermal-property Analysis of Heat Storage Concrete with SSPCM for Energy Saving in Buildings (축열 성능 향상 SSPCM 혼합 콘크리트 제조 및 열적특성 분석)

  • Jeong, Su-Gwang;Chang, Seong Jin;Lim, Jae-Han;Kim, Hee-Sun;Ryu, Seong-Ryong;Kim, Sumin
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.89-96
    • /
    • 2015
  • n-octadecnae based shape stabilized phase change material (SSPCM) was prepared by using vacuum impregnation method. And an exfoliated graphite nanoplate (xGnP) which has high thermal conductivity properties is used as a PCM container. And then we made heat storage concretes which contains SSPCM for reducing heating and cooling load in buildings. In the prepararion process, the SSPCM was mixed to a concrete as 10, 20 and 30wt% of cement weight. The thermal properties and chemical properties of heat storage concrete were analyzed from Scanning electron microscope (SEM), Fourier transformation infrared spectrophotometer (FT-IR), Deferential scanning calorimeter (DSC), Thermogravimetric analysis (TGA) and TCi thermal conductivity analyzer. And we conducted surface temperature analysis of SSPCM and xGnP by using heat plate and insulation mold.

Phase stability and Sintered Properties of 1.5mol% Yttria-stabilized Zirconia Ceramics Fabricated by Low Temperature Sintering (저온 열처리로 제작된 1.5 mol% 이트리아 안정화 지르코니아 세라믹스의 상 안정성 및 소결물성)

  • Kyung Tae Kim;Han Cheol Choe;Jeong Sik Park;Jong Kook Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Phase stability of tetragonal crystals in yttria-stabilized zirconia ceramics is dependent on the content of yttria and the heat-treatment condition, related with mechanical properties. In this study, we fabricated the 1.5 mol% yttria-stabilized zirconia (1.5Y-YSZ) ceramics by cold isostatic pressing (CIP) and post-sintering at temperature range of 1200 to 1350℃ for 2 hours and investigated the sintered properties and microstructural evolution. Sintered and microstructural parameters, i.e, apparent density, grain size and phase composition of 1.5Y-YSZ ceramics were mainly dependent on the sintering temperature. Maximum sintered density of 99.4 % and average grain size of 200-300 nm could be obtained from the heat-treatment condition above sintering temperature at 1300℃ for 2 hours, possessing the superior mechanical hardness with 1200 Hv. However, phase stability of tetragonal grains in 1.5 YSZ ceramics is very low, inducing the phase transformation to monoclinic crystals on specimen surface during cooling after heat-treatment.

Transformation and Mutation of Bacillus licheniformis 9945a Producing ${\gamma}-Poly(glutamic\;acid)$ (${\gamma}-Poly(glutamic\;acid)$ 생산성 균주 Bacillus licheniformis 9945a의 형질전환 미 돌연변이 유도)

  • Chung, Wan-Seok;Ko, Young-Hwan
    • Applied Biological Chemistry
    • /
    • v.40 no.3
    • /
    • pp.173-177
    • /
    • 1997
  • Bacillus licheniformis 9945a releases a natural ${\gamma}-poly(glutamic\;acid)({\gamma}-PGA)$ into fermentation broth and shows a mucoid phenotype on the solid agar medium. Transformation of mucoid cells of Bacillus species has not been simple and straightforward. The transpositional activity of Tn10 in B. licheniformis also has not been own either. Thus, a spontaneous non-mucoid derivative of the B. licheniformis was obtained first. Shuttle vector pHV1248 containing mini-Tn10 was introduced into the non-mucoid derivative by the method of protoplast transformation. The resulting transformant was reverted to the wild mucoid phenotype, and then mutated randomly with the mini-transposon by heat induction. Auxotrophs requiring arginine, lysine, or tryptophan were isolated by replica plating method. Southern blotting and DNA-DNA hybridzation analysis showed that these auxotrophs were generated by mini-Tn10 insertion into the chromosomal DNA. This method of transformation and mutation using pHV1248 would be useful for the generation of diverse mutants of B. licheniformis 9945a.(Received January 24,1997; accepted March 10, 1997)

  • PDF

Surface Modification and Heat Treatment of Ti Rod by Electro Discharge (전기방전에 의한 Ti rod의 열처리 및 표면개질 특성에 관한 연구)

  • Byun, C.S.;Oh, N.H.;An, Y.B.;Cheon, Y.W.;Kim, Y.H.;Cho, Y.J.;Lee, C.M.;Lee, W.H.
    • Korean Journal of Materials Research
    • /
    • v.16 no.3
    • /
    • pp.168-172
    • /
    • 2006
  • Single pulse of 2.0 to 3.5 kJ from $150{\mu}F$ capacitor was applied to the cp Ti rod for its surface modification and heat treatment. Under the conditions of using 2.0 and 2.5 kJ of input energy, no phase transformation has been occurred. However, the hardness and tensile strength decreased and the elongation increased after a discharge due to a slight grain growth. By using more than 3.0 kJ of input energy, the electro discharge made a phase transformation and the hardness at the edge of the cross section increased significantly. The Ti rod before a discharge was lightly oxidized and was primarily in the form of $TiO_2$. However, the surface of the Ti rod has been instantaneously modified by a discharge into the main form of TiN from $TiO_2$. Therefore, the electro discharge can modify its surface chemistry in times as short as $200{\mu}sec$ by manipulating the input energy, capacitance, and discharging environment.

삼음삼양(三陰三陽)에 관(關)한 연구(硏究)

  • Yun, Chang-Yeol
    • Journal of Haehwa Medicine
    • /
    • v.4 no.2
    • /
    • pp.337-353
    • /
    • 1996
  • The following results are obtained through study on the Three Eum and Three Yang. 1. Up to nowadays, many people confuse the Great Yang, the lesser Eum, the Great Eum, and the lesser Yang of the Sasang with the Great Yang, the lesser Yang, the Sunlight, the Great Eum, the lesser Eum, and the absolute Eum of the Three Eum and Three Yang becuase they are expressed with the same letters. But the former is the second specialization of the Eum and Yang, and the latter is the transformation of the six climate, so they cannot be the same thing, and there is no connection between them. 2. Three Eum and Three Yang is the outer expression of the six climate, which is coldness, heat, dryness, humidity, wind, and the fire, and it is the conception of the formation of objects which possess SI-JUNG-JONG & BON-JUNG-MAL, and it represents one term of the status of transformation in which the life and the Yang Qi are born, grown, united, and completed. 3. The Three Eum and Three Yang is not only applyed to the outer expression of the six climate, but also to the twelve channels which correspond with the twelve viscera, six differentiation of the disease of the cold, various illness, and the form of pulse. 4. The combination of the Three Eum and Three Yang and the twelve channels is divided into the channel of Sahwa and the channel of Jonghwa, and it also has important relationship with the physiology of the viscera. 5. The division of the six channels of disease of the cold suggested by Junggyung originates from the heat theory in Neagyung, but the six channels in the heat theory are of pathological conception, so the six channels of Junggyung includes the disease of the channels and the viscera. 6. The difference of the Pyo, Bon, Jung Qi of the Three Eum and Three Yang makes the syndrom of the disease diverse so it can be used in the diagnosis and the treatment of disease, and further studies are necessary on this part.

  • PDF

Numerical Simulation considering Latent Heat Effect for Laser Cladding Process (잠열을 고려한 레이저 클래딩 공정의 수치해석)

  • Zhao, Guiping;Si, Ho-Mun;Jo, Jong-Du;Kim, Jae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.134-147
    • /
    • 2001
  • Laser cladding process accompanies phase transformations from melting (on heating) through solidifying (on cooling) at the same time within a small material volume and to final solid phase. The phase transformations are not reversible, but an irreversible thermodynamic process; they accompany either absorption or release of thermal energy (referred to latent heat) during transformation. Yet, most analyses on materials processed by laser as a heat source have been performed on models of neglecting the latent heat in the process and those did not Justify the simplification. With literatures on the laser material process, we have not place an answer to how little the assumption affects on analyses. This led us to our current study: the effects of latent heat on thermo-mechanical analysis. To this end, we developed a fairly accurate program accommodating an algorithm for enforcing the latent heat whenever necessary and ran it combining with ABAQUS$^{TM}$. The simulation techniques we used in this study were verified by directly comparing our prediction with experimental publications elsewhere; our numerical results agreed accurately with the experiments. On the effects of the latent heat, we performed two alternatives about considering the latent heat in analysis, and compared each other. As a result, we found that more accurate conclusions might come out when considering the latent heat in process analyses.s.

  • PDF

DISCUSSION ABOUT HBS TRANSFORMATION IN HIGH BURN-UP FUELS

  • Baron, Daniel;Kinoshita, Motoyasu;Thevenin, Philippe;Largenton, Rodrigue
    • Nuclear Engineering and Technology
    • /
    • v.41 no.2
    • /
    • pp.199-214
    • /
    • 2009
  • High burn-up transformation process in low temperature nuclear fuel oxides material was observed in the early sixties in LWR $UO_2$ fuels, but not studied in depth. Increasing progressively the fuel discharge burn-up in PWR power plants, this material transformation was again observed in 1985 and identified as an important process to be accounted for in the fuel simulations due to its expected consequence on fuel heat transfer and therefore on the fission gas release. Fission gas release was one of the major concerns in PWR fuels, mainly during transient or accidents events. The behaviour of such a material in case of rod failure was also an important aspect to analyse. Therefore several national and international programs were launched during the last 25 years to understand the mechanisms leading to the high burn-up structure formation and to evaluate the physical properties of the final material. A large observations database has been acquired, using the more sophisticated techniques available in hot cells. This large database is discussed in this paper, providing basis to build an engineering-model, which is based on phenomenological description data and information accumulated. In addition this paper has the ambition to construct the best logical model to understand restructuring.

A study on the Structure and Transformation Rate of Heat Treatment of Forged TAP Housing and Valve for Automotive Parts (단조용 자동차 부품 T/P Housing과 Valve의 열처리에 따른 조직 및 변형 속도에 관하여)

  • 유형종;이호진;이건영;최진일
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.155-158
    • /
    • 2003
  • The effects of Mn, V addition on the behavior of structure and the effects of cooling rate of S20C steel for use of Tn housing and valve for automotive parts have been investigated. Transformation start temperature measured from inflection point of cooling curves has been found out to decrease with increasing cooling rate and to be more sensitive to Mn contents when cooling rate is fast. It was therefore shown that the grain was refined. If there is a big compacting pressure, it is indicated that hardness becomes much greater at surface than inside.

  • PDF

Modeling of heat efficiency of hot stove based on neural network using feature extraction (특성 추출과 신경회로망을 이용한 열 풍로 열효율에 대한 모델링)

  • Min Kwang Gi;Choi Tae Hwa;Han Chong Hun;Chang Kun Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.60-66
    • /
    • 1998
  • The hot stove system is a process that is continuously and constantly generating the hot combustion air required for the blast furnace. The hot stove process is considered as a main energy consumption process because it consumes about $20\%$ of the total energy in steel making works. So, many researchers have interested in the improvement of the heat efficiency of the hot stove to reduce the energy consumption. But they have difficulties in improving the heat efficiency of the hot stove because there is no precise information on heat transformation occurring during the heating period. In order to model the relationship between the operating conditions and heat efficiencies, we propose a neural network using feature extraction as one of experimental modeling methods. In order to show the performance of the model, we compare it with Partial Least Square (PLS) method. Both methods have similarities in using the dimension reduction technique. And then we present the simulation results on the prediction of the heat efficiency of the hot stove.

  • PDF

Computational Simulation of Carburizing and Quenching Processes of a Low Alloy Steel Gear (저합금강 기어의 침탄 및 소입 공정에 대한 전산모사)

  • Lee, Kyung Ho;Han, Jeongho;Kim, Gyeong Su;Yun, Sang Dae;Lee, Young-Kook
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.6
    • /
    • pp.300-309
    • /
    • 2015
  • The aim of the present study was to predict the variations in microstructure and deformation occurring during gas carburizing and quenching processes of a SCM420H planetary gear in a real production environment using the finite element method (FEM). The motivation for the present study came from the fact that previous FEM simulations have a limitation of the application to the real heat treatment process because they were performed with material properties provided by commercial programs and heat transfer coefficients (HTC) measured from laboratory conditions. Therefore, for the present simulation, many experimentally measured material properties were employed; phase transformation kinetics, thermal expansion coefficients, heat capacity, heat conductivity and HTC. Particularly, the HTCs were obtained by converting the cooling curves measured with a STS304 gear without phase transformations using an oil bath with an agitator in a real heat treatment factory. The FEM simulation was successfully conducted using the aforementioned material properties and HTC, and then the predicted results were well verified with experimental data, such as the cooling rate, microstructure, hardness profile and distortion.