• Title/Summary/Keyword: Transformation Heat

Search Result 592, Processing Time 0.027 seconds

Heat Transfer and Solidification in the Inviscid Stagnation Flow (비점성 정체 유동 하에서의 응고와 열전달)

  • Yoo Joo-Sik;Kim Yong-Jin
    • Journal of computational fluids engineering
    • /
    • v.5 no.1
    • /
    • pp.27-32
    • /
    • 2000
  • This study investigates the problem of phase change from liquid to solid in the inviscid stagnation flow. The instantaneous location of the solid-liquid interface is fixed for all times by a coordinate transformation. Finite difference method is used to obtain the solution of the unsteady problem, and the growth rate of solid and the transient heat transfer from the surfaces of solid are investigated. The transient solution is dependent on the three dimensionless parameters, but the final steady state is determined by only one parameter of temperature ratio/conductivity ratio. It is observed that the instantaneous heat flux at the surface of solid can be obtained with sufficient accuracy by measuring the thickness of the solid or vice versa.

  • PDF

Study on Transient Temperature Distribution in Annular Fin of Uniform Thickness (均一두께 의 원통핀 에서 過渡溫度 分布 에 관한 硏究)

  • 손병진;박희용;이흥주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.3
    • /
    • pp.247-255
    • /
    • 1982
  • The heat diffusion equation for an annular fin is analyzed by Laplace transformation. The fin has a uniform thickness, with its end insulated, and three different temperature profiles at the base such as step change, harmonic and exponential functions. The exact solutions for the temperature and heat flux of the fins are obtained with the infinite series. The series solutions converge rapidly for large values of dimensionless time, but slowly for small values. Therefore some approximate solutions are presented here to fine the temperature distribution and heat flux for small values of dimensionless time. Furthermore a simple approximate heat flux, .OMEGA.=1.13c.tau.$^{1}$2/ is found in the range of .tau. .leg. o.1/c for the exponential function at the base.

Laser Hardening of Piston Ring Groove (피스톤 링그루브의 레이저 열처리)

  • Song, Y.K.;Suh, S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.3
    • /
    • pp.165-171
    • /
    • 1997
  • Laser hardening for the piston ring groove of ductile cast iron was tried. Mechanical and microstructural investigation for the hardened area indicated that the laser heating technique could replace conventional induction hardening process completely and further showed that post grinding process would be eliminated by minimizing bulging of heat treated area. In laser hardening, the volume increase caused by martensitic phase transformation proved to be less than $10{\mu}m$, which insures no post machining on the hardened surface. As expected, the depth of hardening was inversely proportional to the beam scanning velocity and the highest surface hardness was obtained at the beam velocity of 0.75m/min. Heat treatment using phosphate coating demonstrated quite comparable result to the case of graphite suscepter.

  • PDF

Formation and Thermal Decomposition of a Quasicrystalline Phase in Al-Fe-Mo Alloys (Al-Fe-Mo 합금에서 준결정상의 생성 및 열분해에 관한 연구)

  • Kim, Suk Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.6
    • /
    • pp.362-368
    • /
    • 2005
  • Formation and thermal stability of a quasicrystalline phases in Al-Fe-Mo alloys were investigated by means of melt-spinning process and subsequent heat treatment test. Thermal decomposition and phase transformation process of the as-spun alloys were studied using X-ray diffraction and electron microscopy. The melt-spun Al-Fe-Mo alloys contained an icosahedral quasicrystalline phase with a quasilattice constant of 0.457 nm. Icosahedral phase formed at a composition of $Al_{82.5}Fe_{14}Mo_{3.5}$ as a metastable phase during rapid solidification was transformed into the stable crystalline phases, cubic 1/0 approximant and monoclinic ${\lambda}$-phase, upon heating. A metastable icosahedral and cubic(a = 0.93 nm) phases in as-spun $Al_{65}Fe_{20}Mo_{15}$ alloy were decomposed into two cubic(a = 0.62, 0.31 nm) phases by heat treatment.

Analysis of the second grade fluid under the influence of thermal radiation with convective heat and mass transfer

  • Khurrum Fareed;Muzamal Hussain;Muhammad Taj;Abdelouahed Tounsi
    • Computers and Concrete
    • /
    • v.34 no.3
    • /
    • pp.347-353
    • /
    • 2024
  • This paper investigates the second-grade fluid between two parallel plates. Fluid is produced due to stretching. Convective heat and mass transfer features are elaborated with thermal and solutal stratification. Thermal radiation and chemical reactions are also assumed in heat and mass transport processes partial differential. Formulated non-linear partial differential equations are transformed into non-linear ordinary differential equations by utilizing the suitable transformation. Convergent series solutions are computed via Homotopy Analysis Method (HAM). Effects of Hartman number, temperature field, velocity distribution and Prandtl number are sketched and analyzed through graphs. It is noticed that velocity field first decreases and after some distance it shows increasing behavior by the increment.

Transformation Techniques for the Large Scale Production of Ginsenoside Rg3 (Ginsenoside Rg3의 함량증가를 위한 변환 기술)

  • Nam, Ki Yeul;Choi, Jae Eul;Park, Jong Dae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.5
    • /
    • pp.401-414
    • /
    • 2013
  • Ginsenoside Rg3 (G-Rg3) contained only in red ginseng has been found to show various pharmacological effects such as an anticancer, antiangiogenetic, antimetastastic, liver protective, neuroprotective immunomodulating, vasorelaxative, antidiabetic, insulin secretion promoting and antioxidant activities. It is well known that G-Rg3 could be divided into 20(R)-Rg3 and 20(S)-Rg3 according to the hydroxyl group attached to C-20 of aglycone, whose structural characteristics show different pharmacological activities. It has been reported that G-Rg3 is metabolized to G-Rh2 and protopanaxadiol by the conditions of the gastric acid or intestinal bacteria, thereby these metabolites could be absorbed, suggesting its absolute bioavailability (2.63%) to be very low. Therefore, we reviewed the chemical, physical and biological transformation methods for the production on a large scale of G-Rg3 with various pharmacological effects. We also examined the influence of acid and heat treatment-induced potentials on for the preparation method of higher G-Rg3 content in ginseng and ginseng products. Futhermore, the microbial and enzymatic bio-conversion technologies could be more efficient in terms of high selectivity, efficiency and productivity. The present review discusses the available technologies for G-Rg3 production on a large scale using chemical and biological transformation.

Real-time Transformation of FePt Nanoparticles to L10 Phase by the Gas Phase Synthesis (기상합성공정을 이용한 FePt 나노입자의 실시간 L10 상변화)

  • Lee, Ki-Woo;Lee, Chang-Woo;Kim, Soon-Gil;Lee, Jai-Sung
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.46-51
    • /
    • 2011
  • Real-time formation of $L1_0$ phase of FePt nanoparticles in the gas phase during ultrasonic-spray pyrolysis is first discussed in the present study. Without any post heat treatment, $L1_0$ phase of FePt nanoparticles appeared at the temperature above $900^{\circ}C$ in the gas phase synthesis. X-ray diffractometry (XRD) and transmission electron microscopy (TEM) studies revealed that FePt nanoparticles less than 10 nm in size contained small volume of $L1_0$ fct phase. However, in other samples obtained at the temperature below $900^{\circ}C$, iron oxide phase co-existed and no evidence of phase transformation was found. Thus, it is anticipated that the time of flight of particles required for crystallization and phase transformation was extended according to the increase of the collision rate. Finally, magnetic properties represented by coercivity and saturation magnetization and functional groups on the particle surface were discussed based on VSM and FT-IR results.

Phase Transformation and Mechanical Properties of 14 K White Gold Alloys by Heat Treatments

  • Yun, Don-Gyu;Seo, Jin-Gyo;An, Yong-Gil;Sin, So-Ra;Han, Dong-Seok;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.283-283
    • /
    • 2013
  • Because of beautiful glossy and color, the value of gold leverage is very high in Europe. To improve the quality of gold alloys, we performed heat treatment on 14 K white gold alloys by variously changing age-hardening conditions. Age-hardening behavior and the related phase transformation changes were studied to elucidate the hardening mechanism of 14 K white gold alloy. For solid solution treatment [ST], casted gold alloy specimens were treated at high temperature ($750^{\circ}C$) for 30 minutes, and the specimens dropped to water to quench them. For Age-hardening treatment [AT], the specimens were treated at various temperatures ($250{\sim}300^{\circ}C$). After the heat treatment, we observed the phenomenon to increase hardness from 126 Hv to 166 Hv by Vicker's hardness tester. Through electron probe micro-analysis (EPMA) mapping analysis, we investigated that irregular particles were changed uniformly. In the SEM and OM images, two phases of matrix and particle-likestructures were observed, and the precipitation of these elements from the matrix progressed during age-hardening. By transmission electron microscope and X-ray diffraction observation, it was revealed that the formation of the Au3Cu superstructure contributed to the age-hardening at $270^{\circ}C$ in the gold alloy. After the heat treatment, this analysis shows that casted gold alloys were to improve hardness and to moderate surface defects at specific temperatures and duration.

  • PDF

A Study on the Periodic Transient Response Characteristics in Annular Fin with Uniform Thickness (均一두께의 環狀흰에서 週期的 過渡應答 特性에 관한 硏究)

  • 김광수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.338-348
    • /
    • 1988
  • This study presents an analysis of periodic heat diffusion in an annular fin with uniform thickness. When the temperature of the fin base is changed in the form of a sinusoidal function, the exact temperature solution can be obtained by Laplace transformation in terms of the dimensionless parameters in the infinite series. Local heat flux and average heat flux, local fin efficiency and average fin efficiency were obtained. Particularly, the table of eigenvalues that are the indispensable condition in solving the heat transfer problem of annular fin in a transient state with convection phenomena at the fin edge is provided. The tables of heat fluxes and average heat fluxes, fin efficiencies and average fin efficiencies are also provided from the computed results. Also, substituting the variations of dimensionless parameters into the these exact solutions, the characteristics of these response are investigated.

Effect of surface and heat treatment on the bond strength of veneering ceramics to zirconia(Y-TZP) (표면처리와 열처리가 전장도재와 지르코니아의 결합력에 미치는 영향)

  • Lee, Jung-Hwan;Ahn, Jae-Seok
    • Journal of Technologic Dentistry
    • /
    • v.35 no.4
    • /
    • pp.271-280
    • /
    • 2013
  • Purpose: This study was to assess the effect of surface and heat treatment on the bond strength of veneering ceramics to zirconia. Methods: The specimens were divided into 7 groups according to surface treatment and heat treatment conditions prior to porcelain application. ten specimens from each group were subjected to a 3-point flexural test. In addition the influence of surface and heat treatment on surface roughness values and phase transformation of zirconia was evaluated. Statistical analysis was performed with one-way ANOVA and post hoc Tukey's test. Results: Bond strength ranged from $20.67{\pm}3.13MPa$ to $32.69{\pm}4.52$. Bond strength of surface treatment group was lower than that of control group but only $Al_2O_3$ sandblasting group was significant difference. Bond strength of heat treatment group was higher than that of surface treatment group but there was no statistical significance. Conclusion: Bond strength of veneering ceramics to zirconia was affected by surface and heat treatment.