Multiple rotation-based transformation (MRBT) was introduced recently for mitigating the apriori-knowledge independent component analysis (AK-ICA) attack on rotation-based transformation (RBT), which is used for privacy-preserving data clustering. MRBT is shown to mitigate the AK-ICA attack but at the expense of data utility by not enabling conventional clustering. In this paper, we extend the MRBT scheme and introduce an augmented rotation-based transformation (ARBT) scheme that utilizes linearity of transformation and that both mitigates the AK-ICA attack and enables conventional clustering on data subsets transformed using the MRBT. In order to demonstrate the computational feasibility aspect of ARBT along with RBT and MRBT, we develop a toolkit and use it to empirically compare the different schemes of privacy-preserving data clustering based on data transformation in terms of their overhead and privacy.
Communications for Statistical Applications and Methods
/
v.31
no.3
/
pp.349-363
/
2024
Compositional data refers to data where the sum of the values of the components is a constant, hence the sample space is defined as a simplex making it impossible to apply statistical methods developed in the usual Euclidean vector space. A natural approach to overcome this restriction is to consider an appropriate transformation which moves the sample space onto the Euclidean space, and log-ratio typed transformations, such as the additive log-ratio (ALR), the centered log-ratio (CLR) and the isometric log-ratio (ILR) transformations, have been mostly conducted. However, in scenarios with sparsity, where certain components take on exact zero values, these log-ratio type transformations may not be effective. In this work, we mainly suggest an alternative transformation, that is the square-root transformation which moves the original sample space onto the directional space. We compare the square-root transformation with the log-ratio typed transformation by the simulation study and the real data example. In the real data example, we applied both types of transformations to the USG% data obtained from NBA, and used a density based clustering method, DBSCAN (density-based spatial clustering of applications with noise), to show the result.
Journal of the Korean Data and Information Science Society
/
v.22
no.5
/
pp.967-976
/
2011
The Box-Cox transformation is a well known family of power transformations that brings a set of data into agreement with the normality assumption of the residuals and hence the response variable of a postulated model in regression analysis. Normalization (studentization) of the regressors is a common practice in analyzing microarray data. Here, we implement Box-Cox transformation in normalizing regressors in microarray data. Pridictabilty of the model can be improved using data transformation compared to studentization.
Journal of information and communication convergence engineering
/
v.20
no.4
/
pp.265-272
/
2022
The most effective method to improve information system capabilities is to enable instant access to several relational database sources and transform data with a logical structure into multiple target relational databases. There are numerous data transformation tools available; however, they typically contain fixed procedures that cannot be changed by the user, making it impossible to fulfill the near-real-time data transformation requirements. Furthermore, some tools cannot build object references or alter attribute constraints. There are various situations in which tool changes in data type cause conflicts and difficulties with data quality while transforming between the two systems. The R-programming language was extensively used throughout this study, and several different relational database structures were utilized to complete the proposed study. Experiments showed that the developed study can improve the performance of information systems by interacting with and exchanging data with various relational databases. The study addresses data quality issues, particularly the completeness and integrity dimensions of the data transformation processes.
Journal of Korean Society of Industrial and Systems Engineering
/
v.20
no.42
/
pp.1-8
/
1997
In case of analysis of discrete data, it shows by way of example orthogonal array experiment for o, 1 data. This paper introduced expirical logit transformation and the type of Freeman-Tukey inverse sine transformation. As the result of analysis of variance, empirical logit transformation turned out a mistake in application but it is possible for graphical analysis by normal probability paper.
Speaker adaptation techniques are generally used to reduce speaker differences in speech recognition. In this work, we focus on the features fitted to a linear regression-based speaker adaptation. These are obtained by feature transformation based on independent component analysis (ICA), and the feature transformation matrices are estimated from the training data and adaptation data. Since the adaptation data is not sufficient to reliably estimate the ICA-based feature transformation matrix, it is necessary to adjust the ICA-based feature transformation matrix estimated from a new speaker utterance. To cope with this problem, we propose a smoothing method through a linear interpolation between the speaker-independent (SI) feature transformation matrix and the speaker-dependent (SD) feature transformation matrix. From our experiments, we observed that the proposed method is more effective in the mismatched case. In the mismatched case, the adaptation performance is improved because the smoothed feature transformation matrix makes speaker adaptation using noisy speech more robust.
Journal of the Korean Association of Geographic Information Studies
/
v.7
no.3
/
pp.48-56
/
2004
This research focuses on the development of a fast datum transformation model to be used in GIS that utilizes real-time data transformation. Instance, when a GIS data constructed according to a datum is conformed to another datum, instead of transforming the axes of the original data, the data is transformed right before the results are reflected on the monitor. In this research, the prospects of calculating transformation parameters for every grid cells on the area based on two-dimensional conformal transformation model in order to decrease real-time datum transformation time while maintaining a high accuracy has been investigated. Research results showed that for a fixed area, the accuracies of the two-dimensional conformal transformation and the three-dimensional datum transformation, which requires more computing time, were almost equal and fast transformation speed, high accuracy real-time datum transformation is made feasible by implementing the grid-divided two-dimensional conformal transformation model.
The process and change of convergence in the economy and industry with the development of digital technology and combining with new technologies is called Digital Transformation. Specifically, it refers to innovating existing businesses and services by utilizing information and communication technologies such as big data analysis, Internet of Things, cloud computing, and artificial intelligence. Digital transformation is changing the shape of business and has a wide impact on businesses and consumers in all industries. Among them, the big data and analytics market is emerging as one of the most important growth drivers of digital transformation. Integrating intelligent data into an existing business is one of the key tasks of digital transformation, and it is important to collect and monitor data and learn from the collected data in order to efficiently operate a data-based business. In developed countries overseas, research on new business models using various data accumulated at the level of government and private companies is being actively conducted. However, although the trade and import/export data collected in the domestic public sector is being accumulated in various types and ranges, the establishment of an analysis and utilization model is still in its infancy. Currently, we are living in an era of massive amounts of big data. We intend to discuss the value of trade big data possessed from the past to the present, and suggest a strategy to activate trade big data for trade digital transformation and a new direction for future trade big data research.
Journal of Information Technology Applications and Management
/
v.10
no.4
/
pp.103-118
/
2003
This study presents a database quality evaluation framework. As a way to build a framework, this study expands data quality management to include data transformation processes as well as data. Further, an information structure graph is applied to represent data transformations processes. An information structure graph is absed on a relational database scheme. Thus, data transformation processes may be stored in a relational database. This kind of integration of data transformation metadata with technical metadata eases evaluation of database qualities and their causes.
When teaching the linear regression analysis in the class, the power transformation must be introduced to fit the linear regression model for nonlinear data. Box and Cox (1964) proposed the attractive power transformation technique which is so called Box-Cox transformation. In this paper, an effective algorithm selecting an appropriate value for Box-Cox transformation is developed which is considered to find a value minimizing error sum of squares. When the proposed algorithm is used to find a value for transformation, the number of iterations needs to be considered. Thus, the number of iterations is examined through simulation study. Since SAS is one of most widely used packages and does not provide the procedure that performs iterative Box-Cox transformation, a SAS program automatically choosing the value for transformation is developed. Hence, the students could learn how the Box-Cox transformation works, moreover, researchers can use this for analysis of data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.