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Abstract

When teaching the linear regression analysis in the class, the power transformation
must be introduced to fit the linear regression model for nonlinear data. Box and qu
(1964) proposed the attractive power transformation technique which is so called
Box-Cox transformation.

In this paper, an effective algorithm selecting an appropriate value for Box-Cox
transformation is developed which is considered to find a value minimizing error sum
of squares. When the proposed algorithm is used to find a value for transformation,
the number of iterations needs to be considered. Thus, the number of iterations is
examined through simulation study. Since SAS is one of most widely used packages
and does not provide the procedure that performs iterative Box-Cox transformation, a
SAS program automatically choosing the value for transformation is developed. Hence,
the students could learn how the Box-Cox transformation works, moreover, researchers

can use this for analysis of data.

0. Introduction

Regression analysis was first developed by Sir F. Galton, well-known anthropologist

and meteorologist, in the latter part of the 19th century. Galton has studied the relation

* The authors wish to acknowledge the financial support of Hanyang University, Korea, made in
the program year of 1997.
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between hights of fathers and sons and noted that the heights of sons of both tall and
short fathers appeared to revert or regress to the mean of the group. Since then, many
new methods, such as least squares method and transformations, for regression analysis
have developed. Thus, the subject of linear regression analysis becomes one of major
courses in teaching statistics. It mainly concerns the study of linear relations among
variables, for the purpose of constructing models, prediction and making inferences. The
relationship is expressed as an equation that predicts a response variable (dependent
variable) from a function of regressor (independent variable) and parameters.

A simple linear regression model where there is only one independent variable can be

stated as
yi=pFy+ Bix;+e, i=1,2,, 5. (0.1)

Here, the ¢€; are independently and identically distributed normal random errors with
mean zero and common variance . The x; i1s the level of the independent variable as
a known constant and the y; is the observed response in the ith trial. Also, the g,

and fB; are parameters to estimate so that a measure of fit is optimized.

The measure of variation in the data with the regression model is the sum of the

squared deviation, which is expressed as SSE= 2( Vi— 32)2. Here SSE denotes error

sum of squares and 3//\,-=b0+ bix; is the fitted regression line. If SSE=0, all

observations fall on the fitted regression line.
When we want to use linear regression model for analysis, it is necessary to consider

the use of transformations of one or both of the original variables before carrying out
the regression analysis. Simple transformations of either the dependent variable vy or the
independent variable x, or of both, are often sufficient to make the simple linear
regression model appropriate for the transformed data.

There are two view points to consider for transformation. First, the relationship
between y and x is nonlinear but the usual assumptions of normally and independently
distributed responses with constant variance are at least approximately satisfied. Second,
we wish to transform 3y to correct non-normality and nonconstant variance. Here, we

consider the second case mentioned above, since it affects the full regression model
more sensitively and 1s more complicate.

Box and Cox (1964) introduced a procedure for choosing a transformation from the

family of power transformations on y. Recently, Box-Cox transformation is reexamined
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by a few authors. Logothetis (1990) applied this procedure to Taguchi's method for the
optimization of multiresponse plasma etching process. Fearn (1992), also, examined the
same procedure to another Taguchi method.

As Seber (1977) mentioned, the useful family of power transformations which is used
for correcting skewness of the distributions of error terms, unequal error variances, and

nonlinearity of the regression function is of the form

A
w_ [y (A%0)

where A is a parameter to be determined form the data.
The criterion for determining the appropriate parameter A of the transformation of ¥

in the Box—Cox approach is to find the value of A that minimizes the SSE for a linear
regression based on that transformation. In other words, we can select a number of

values of A, make the corresponding transformation for each, fit the linear regression
function to the transformed 3y data, and calculate SSE for each fit. That value of A is
then chosen that minimizes SSE. This is the reason why we need an algorithm and a

program which performs the iterative transformations with a few different values of A
so that the appropriate value for power transformation is automatically selected.

Thus, the technique of power transformation as exemplified by Box-Cox
transformation that is used to choose a parameter for the power transformation could
simultaneously achieves

(i) simplicity (linearity) of the model structure for E(y);

(ii) constancy of error variance or, equivalently, independence between cell mean and
cell variance, i.e. between the sample mean and the sample variance of the
observations in each experimental trial;

(iii) normality of distributions;

(iv) independence of observations.

It has been recognized for a long time that data transformation methods capable of
achieving (i)-(iv) could have a crucial role in statistical analysis, especially towards an
efficient application of techniques such as analysis of variance (ANOVA) and multiple
regression analysis.

Therefore, it is necessary to use some transformation techniques before carrying out

linear regression analysis and the power transformation, Box-Cox method, is one of the

best methods to achieve these goals.
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1. Analytical procedures of power transformation

We work with a parametric family of transformations from y to yu), the parameter

A, possibly a vector, defining a particular transformation. As Box and Cox (1964)

suggested and lately illustrated by a few authots such as Cook and Weisberg (1982),

two important power transformations need to be considered are

A
o {J—;l (A40)

1.1
logy (A=0), (LD
and
+A)"—1
o [% (1#0)
y@ = 1 1.2)
log(y+4y) (A,=0).

The transformations (1.1) contains the usual log, square root and inverse transformation

)

as special cases. It is assumed that for each A4, y(’1 1s a monotonic function of vy over

the admissible range. In fact, (1.1) is identical to (0.2) and is a modification of (0.2) to

avoid discontinuity at A=0 when the regression model (0.1) contains a constant term S,

(see Schlesselman, 1971). Also, for y+ A5>0, the transformations (1.2) is the extended
power family which can be used if the origin is artificial and negative responses occur.

In some situations, it may be sufficient to substitute a convenient value for A, and
then proceed using (1.1) in combination with the shifted response y-+ A,.
Now, to investigate relation between minimizing SSE and the power transformation,

suppose that we observe an #X1 vector of observations ;= {y1,",y,}, and that the

appropriate linear model for the problem is specified by

E{ 3"} =a0, (1.3)

= (A . . . R
where y = is the column vector of transformed observations, a is a known matrix and
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-

@ a vector of unknown parameters associated with the transformed observations.
We now assume that for some unknown A, the transformed observations

y,w, i1=1,---,n, satisfy the full normal theory assumptions, i.e. are independently and

normally distributed with constant variance ¢, and with expectations (1.3). The

probability density for the untransformed observations, and hence the likelihood in
relation to these original observations, is obtained by multiplying the normal density by
the Jacobian of the transformation. Thus, the likelihood in relation to the original

-
observations ¥ is

(y “ﬂg)( y —aﬁ)}]u’y)’ (1.4)

I S _ (
(2x) V25" exp[ 20

I A S
where ](ﬂ,y)*lljll dy; = lljlyi :

In fact, we can use the maximum-likelihood theory to find parameters in (1.4) and is

equivalent to a standard least-squares problem. Hence, for fixed A, the estimate of 02,

T, is

W= 32,3 In=S)/n,

where a,=I—a(a’a) 'a with full rank matrix a and S(A) is the error sum of

squares. For fixed A, the maximized log likelihood is

L (D) =— -% nlog & (N + log JA D).

Since we need to find the value 2, the derivative with respect to A can be used. In the

special care of one parameter power transformation, it is given by

> =W
y__a,
a‘,fi LoD =—n—"Sm——=p +—3£+210gy,-,
y a,y

r

=) . -
where u() is the vector of components {/1 ly’} log yi}.
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Moreover, the above results can be expressed very simply if we work with the

normalized transformation
() > .1
Z0= 30yt

where ]=](/1:;). Then,

L (D) =— 5 log & (k2),
> (A =>(A) -
where Aaz(/l:_z))= £ Zr £ - S(/l'lz) and S(/i:;) is the error sum of squares

of 2z, Then, the maximum likelihood is the proportional to {S(/l:;)} " and the

maximum likelihood estimate, ie., least squares estimate, is obtained by minimizing

S(/i:_z)) with respect A. Hence, the appropriate value of A for power transformation can
be obtained.
Therefore, for the simple power transformation, the resulting normalized values are

then expressed as
i
vi—1
o {UH (A+0)
ylogy  (4=0),

where y is the geometric mean, (I”Il v;) ¥"  of the observations.
hT
For the power transformation with shifted location, z? is defined by
A
(y+2)"—1

Ay + Ay) =1 (A1#0)
gm(y+A)log(y+2;) (A4,=0),

W _

where gm(y+ A,) is the sample geometric mean of the (y+A4,)s.

2. Numerical analysis and conclusions

In this section, we perform the simulation study to see how the proposed algorithm

works. The flowchart is made by procedures explained in section 1 and is programmed
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by SAS, these are given in the Appendix.

Since it is important to examine the number iterations to find an appropriate value for
the power transformation as well as the transformation itself, we consider the two parts
for numerical analysis. First, we try to see whether the number of iterations changes a
value of A. Second, we use the A that is chosen by the proposed algorithm, then check
the transformation through plots of original and transformed data. Also, we consider two
types of data, nonlinear and linear data, to see if the proposed algorithm picks an
appropriate value of transformation for both cases.

For Table 1, the data is adapted from Chatterjee and Price (1977), where the
dependent variable represents the number of bacteria as estimated by plate counts in an
experiment with marine bacterium following exposure to 200 kilovolt x-rays for periods
ranging from 1 to 15 intervals of 6 minutes.

It is easy to see that there exists nonlinear relation between independent and
dependent variables from Figure 1. As we mentioned earlier, the number of iterations is
important to find an appropriate value of A4, thus we have tried 11, 15, 21, 25, 31
different numbers of iterations and the results are shown in Table 1. We can see that
each iteration chooses the A=0 which is the equivalent to the transformation of log v.
We can see, from Figure 2, that the chosen transformation correctly transforms the
original data as linear.

The another data is selected from Montgomery and Peck (1981). The data represents
relation between shear strength as dependent variable and the age of propellant as
independent variable. From Figure 3, we can expect the linear relation between two
variables. However, from Table 2, the proposed algorithm picks the value of A=0.8 or
0.9 for the power transformation. That is, the original data represents the linear-like
relation, the proposed algorithm picks the value close to 1. The transformmed data is
plotted in Figure 4 and it can be seen more like linear of transformmed data than of the
original data.

As results, we can say that 10-20 iterations is enough to select a good
transformation. That is, the proposed algorithm is not very sensitive for the number of
iterations. Also, the proposed algorithm picks an appropriate value for the transformation
of data that looks like linear, and gives better linear relation between two variables,

Moreover, in educational points of view, students could easily understand the power
transformation by going through the algorithm without complete theoretical background.

Also, researchers perform better analysis when they would use the linear regression
models.
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Table 1. Different numbers of iterations for

surviving bacteria

OBS| A SSE A SSE A SSE A SSE A SSE
1 I-1.0 16981.46 |-1.00000 16981.46 {-1.0 16981.46 |-1.00000 16981.46 |-1.00000 16981.46
2 -08 9624.55 |-0.85714 11377.06 |-0.9 12860.78 [-0.91667 13480.59 |-0.93333 14125.82
3 1-06 512524 [-0.71429 7416.89 |-0.8 9624.55 |-0.83333 10617.06 |-0.86667 11693.60
4 {-04 247933 |-057143 4651.05 |-0.7 7092.63 |-0.75000 8280.13 |-0.80000 9624.55
5 1-02 1110.15 |-0.42857 2769.33 |-06 5125.24 |-0.66667 6380.02 |-0.73333 7867.71
6 100  736.72 |-0.28571 1564.41 |-05 3614.71 (-0.58333 4844.25 | -0.66667 6380.02
7 102 131548 [-0.14286 90799 |-0.4 2479.33 |-0.50000 3614.71 |-0.60000 5125.24
8 | 04 304262 | 0.00000 736.72 |[-0.3 1658.65 |-0.41667 2645.31 |-0.53333 4072.98
9 |06 6421.34 | 0.14286 104641 |-0.2 1110.15 |-0.33333 1900.20 | -0.46667 3197.95
10 | 08 12416.84 | 0.28571 1893.98 |-0.1 806.99 |-0.25000 1352.40 {-0.40000 2479.33
11 | 1.0 22749.38 | 0.42857 340766 | 0.0 736.72 |-0.16667 982.741-0.33333 1900.20
12 0.57143 5807.39 | 0.1 900.87 {-0.08333 779.24 | -0.26667 1447.20
13 0.71429 943865 | 0.2 131548 | 0.00000 736.72 {-0.20000 1110.15
14 0.85714 14825.20 | 03 2012.55 | 0.08333 856.74 1-0.13333 881.84
15 1.00000 2274938 | 04 3042.62 | 0.16667 1147.82 |-0.06667 757.90
16 05 4478.63 | 0.25000 1626.02 | 0.00000 736.72
17 06 6421.34 | 033333 2315.81 | 0.06667 819.43
18 0.7 9006.88 | 0.41667 3251.43 | 0.13333 1010.01
19 08 12416.84 | 0.50000 447863 | 0.20000 131548
20 0.9 16891.81 | 0.58333 6057.09 | 0.26667 1746.10
21 10 22749.38 | 0.66667 8063.47 | 0.33333 2315.81
22 0.75000 10595.34 | 0.40000 3042.62
23 0.83333 13776.27 | 0.46667 3949.28
24 0.91667 17762.15 | 0.53333 5063.99
25 1.00000  22749.38 | 0.60000 6421.34
26 0.66667 8063.47
27 0.73333 10041.42
28 0.80000 12416.84
29 0.86667 15264.03
30 0.93333 18672.38
31 1.00000  22749.38
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Table 2. Different numbers of iterations for

shear strength

OBS| A SSE| A SSE| A SSE A SSE A SSE
I j-10 1540.49 {-1.00000 1540.49 (-1.0 1540.49 |-1.00000 1540.49 |-1.00000 1540.49
2 |-08 1003.06 |-0.85714 1131.92 |-0.9 1240.46 |-0.91667 1285.70 {-0.93333 1332.74
3 [-06 665.02 [-0.71429 839.06 -0.8 1003.06 {-0.83333 1076.14 |-0.86667 1155.11
4 1-04 450.46 {-0.57143 628.13 |-0.7 814.74 |-0.75000 903.48 |-0.80000 1003.06
5 {-0.2 313.36 {-0.42857 47553 |-0.6 665.02 |-0.66667 760.99 {-0.73333 87276
6 [ 0.0 22557 |-0.28571 364.75 |-05 545.71 |-0.58333 643.21 |-0.66667 760.99
7102 169.82 1-0.14286 284.16 (-0.4 450.46 |-0.50000 545.71 |-0.60000 665.02
3 |04 135.49 | 0.00000 22557 |-0.3 374.31 {-0.41667 464.89 (-0.53333 582.52
9 |06 116.11 | 0.14286 183.19 {-0.2 313.36 {-0.33333 397.83 (-0.46667 511.56

10 § 0.8 107.84 | 0.28571 152.94 0.1 264.57 |-0.25000 342.14 |-0.40000 450.46
11 { 1.0 108.62 | 0.42857 131.92 | 0.0 22557 |-0.16667 295.87 {-0.33333 397.83
12 0.57143 11813 | 0.1 194.47 |-0.08333 257.45 1-0.26667 352.47
13 0.71429 110.19 | 0.2 169.82 | 0.00000 225.57 |-0.20000 313.36
14 0.85714 107.20 | 0.3 150.46 | 0.08333 199.17 [-0.13333 279.64
15 1.00000 10862 | 0.4 13549 | 0.16667 177.40 |-0.06667 250.59
16 0.5 12422 1 0.25000 159.54 | 0.00000 22557
17 0.6 116.11 | 0.33333 145.02 | 0.06667 204.06
18 0.7 110.75 | 0.41667 133.37 | 0.13333 185.60
19 0.8 107.84 | 0.50000 124.22 | 0.20000 169.82
20 0.9 107.18 | 0.58333 11726 | 0.26667 156.38
21 1.0 108.62 | 0.66667 112.25 | 0.33333 145.02
22 0.75000 109.01 | 0.40000 135.49
23 0.83333 107.38 | 0.46667 127.60
24 0.91667 107.27 | 053333 121.19
25 1.00000 108.62 | 0.60000 116.11
26 0.66667 112.25
27 0.73333 109.52
28 0.80000 107.84
29 0.86667 107.16
30 0.93333 107.43
31 1.00000 108.62

_71_



An Effective Algorithm of Power Transformation

)/
400

200

Fig. 1 Scatter Plot of Original Data

30

10

ty
6 *
* %
*
*
* ok 4 * ok
* * %
* ®
* ok * %
* *
* ok ok ok K
* 2
0 5 10 15 0 10 15
X X

kk

1500 2000

X

Fig. 3 Scatter Plot of Original Data

2500

3000

ty
30

20

10

Fig. 2 Scatter Plot of Transformed Data

*
Hokok
*
*
¥k
*
Hoskok
ER
*%
1500 2000 2500 3000
X

Fig. 4 Scatter Plot of Transformed Data

_72_



Seung-Woo Lee, Kyung-Joon Cha

References

. Montgomery, D.C. and Peck, E.A., Introduction to Linear Regression Analysis, New
York: Wiley & Sons, 1982.

. Seber, G.AF., Linear Regression Analysis, New York: Wiley & Sons, 1977.

3. Box, GEP. and Cox, DR, “An Analysis of Transformations,” Journal of Royal

Statistical Society B, 26(1964), 211-246.
. Schlesselman, J., “Power Families: A Note on the Box-Cox Transformation,” Journal
of Roval Statistical Society B, 33(1971), 307-311.

Cook, R.D. and Weisberg, S. Residuals and Influence in Regression, London:
Chapman and Hall, 1982.

Logothetis, N., “Box-Cox Transformations and the Taguchi Method,” Applied
Statistics 39, No. 1(1990), 31-48.

. Chatterjee S. and Price, B., Regression Analysis by Examples, New York: Wiley &
Sons, 1977.

. Fearn, T., “Box-Cox Transformations and the Taguchi Method: An Alternative
Analysis of a Taguchi Case Study,” Applied Statistics 41, No. 3(1992), 553-559.

_73_



An Effective Algorithm of Power Transformation

Appendix

1) Flow chart for algorithm

DATA INPUT §

R B
" CALCULATE GEOMETRIC MEAN |

X

DATA SET

'

DETERMINE LAMBDA-INTERVAL {

k1

e NO
- S
§ ves :
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© | TRANSPOS = GEOMEAN+LOG(SOVAR) | 1 TRANSPOS = (1 A CEoHE At (LAMBDA-1)))
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: DATA SET |
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? i PROC REG : CALCULATE SSE
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w——  FINISHED THE INTERVAL ="

1

DATA SET |

1

1
PROC PRINT : LAMBDA & SSE |

1

| END

L
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2) SAS program for algorithm

OPTIONS LINESIZE=80 PAGESIZE=60 ;
FILENAME OLDDATA ' A\?7LINEAR.DAT ' ;

/* using NOLINEAR.DAT if we want the automatic selection of A in the nonlinear situation */

/+ using LINEAR.DAT if we want the automatic selection of A in the linear situation */
DATA RAWDATAO ;
INFILE OLDDATA ;
INPUT ID_NUM SPECIES $ FTVAR SDVAR ;
LABEL ID_NUM=" OBSERVATION * FTVAR=" FIRSTVARIABLE ’
SDVAR=" SECONDVARIABLE ' ;

/* calculate geometric mean by program GEOMEANI through GEOMEAN4 */
DATA GEOMEAN1 (KEEP=GEOMEAN) ;

SET RAWDATAO ;

RETAIN AMOUNT 1 ;

AMOUNT=AMOUNT * SDVAR ;

GEOMEAN=AMOUNT =+ (1/_.N_) ;

FILE ' A\GEOMEANT1 " ;

PUT GEOMEAN ;

DATA GEOMEANZ ;
INFILE * AAGEOMEANT1 ' ;
INPUT ROW1-ROW? ;

DATA GEOMEAN3 (DROP=I) ;
SET GEOMEAN? ;
ARRAY COLUMN({?} ROW1-ROW? ;
DO1=1TO?;
COLUMN({I}=ROW? ;
FILE * AA\GEOMEANS ' ;
PUT ROW? ;
END :
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DATA GEOMEAN4 ;
INFILE ' AAGEOMEANS ' ;
INPUT GEOMEAN ;

/% sort all A values and calculate sse by program RAWDATAO and RAWDATA2Z %/
DATA RAWDATAT ;
MERGE RAWDATAO0 GEOMEAM4 ;
DIVISION=?? ; [+ ??=5, 7, 10, 12, 15 in this program +/
DO BEGIN=-DIVISION TO DIVISION BY 1 ;
LAMBDA= BEGIN / DIVISION ;
IF LAMBDA=0 THEN TRANSPOS=GEOMEAN+_OG(SDVAR) ;
ELSE TRANSPOS=(1/(LAMBDA*GEOMEAN*LAMBDA-1)))*(SDVAR+LAMBDA-1) ;
OUTPUT ;
END ;

PROC SORT ; BY LAMBDA ;

PROC REG DATA=RAWDATA1 OUTEST=RAWDATA2 NOPRINT;
MODEL TRANSPOS = FTVAR / SELECTION=RSQUARE SSE ;
BY LAMDBA ;

/+ print all A values and automatically select A minimizing sse by program outdata*/

DATA OUTDAT (KEEP=LAMDA _SSE_ ) ;
SET RAWDATAZ ;

PROC PRINT DATA=0OUTDAT ;
RUN ;
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