• 제목/요약/키워드: Transfer-in

검색결과 25,906건 처리시간 0.045초

수평관내 3성분 혼합냉매의 강제대류비등 열전달 (Forced convective boiling heat transfer for a ternary refrigerant mixture inside a horizontal tube)

  • 오종택
    • 설비공학논문집
    • /
    • 제11권6호
    • /
    • pp.912-920
    • /
    • 1999
  • The forced convective boiling heat transfer coefficients of R-407C were measured inside a horizontal tube 6.0mm I.D. and 4.0m long. The heat transfer coefficients increased according to an increase in heat flux at constant mass flux. Because nucleation was completely suppressed in the two-phase flow region with high quality, heat transfer coefficients in forced convective evaporation were higher than those in nucleate boiling region. Average heat transfer coefficients of R-407C were about 30 percent lower than the pure refrigerant correlation, due to mass transfer resistance at the gas-liquid interface. However, the total experimental data shows an agreement with the predicted data for ternary refrigerant mixtures with a mean deviation of 30%.

  • PDF

자기공진방식의 무선전력전송 시스템에서 공진 중계기 적용 여부에 따른 전력전송 효율 분석 (Analysis of the Efficiency According to Resonant Repeater Application in Magnetic Resonant Wireless Power Transfer System)

  • 백승명;김동은;손진근
    • 전기학회논문지P
    • /
    • 제67권4호
    • /
    • pp.221-226
    • /
    • 2018
  • In this paper, the power transfer efficiency analysis based on the resonant repeater in a magnetic resonance wireless power transfer system is proposed. The efficiency of the magnetic resonance method was verified by comparing the general frequency with the resonance frequency. The resonance repeater was arranged to increase the efficiency and increase the transfer distance. When using resonant repeaters, the maximum efficiency increase is about 36.23[%] and the transfer distance was extended to more than 20[cm]. Through this study, confirmed the effect of using resonance repeaters in wireless power transfer system. As a result, it can be expected that the overall technology related to wireless power transfer system will be more valuable for energy-IT technology.

나선코일의 열전달 특성에 관한 연구 (A Study on Heat Transfer Characteristics of Helical Coiled Tube)

  • 박종운;조동현
    • 수산해양교육연구
    • /
    • 제16권2호
    • /
    • pp.257-270
    • /
    • 2004
  • The two-phase closed thermosyphon is a heat transfer device capable of transfer large quantities of heat from a source to a sink by taking advantage of the high heat transfer rates associated with the evaporation and condensation of a working fluid within the device. A study was carried out with the performance of the heat transfer of the thermosyphon having 50, 60, 70, 80, 90 internal micro grooves in which boiling and condensation occur. A plain thermosyphon having the same inner and outer diameter as the grooved thermosyphon is also tested for comparison. Water, methanol and ethanol have been used as the working fluids. The liquid filling as the ratio of working fluid volume to total volume of thermosyphon, the inclination angle, micro grooves and operating temperature have been used as the experimental parameters. The heat flux and the boiling and the condensation heat transfer coefficient and overall heat transfer coefficient at the condenser and evaporator zone are estimated from the experimental results. The experimental results have been assessed and compared with existing correlations. Imura's and Kusuda's correlation for boiling showed in good agreement with experimental results within ${\pm}20$% in plain thermosyphon. The maximum heat transfer rate was obtained when the liquid fill ratio was about 25%. The high heat transfer coefficient was found between 25o and 30o of inclination angle for water and between 20o and 25o for methanol and ethanol. The relatively high rates of heat transfer have been achieved in the thermosyphon with internal micro grooves. The micro grooved thermosyphon having 60 grooves shows the best heat transfer coefficient in both condensation and boiling. The maximum enhancement (i.e. the ratio of the heat transfer coefficients of the micro grooved thermosyphon to plain thermosyphon) is 2.5 for condensation and 2.3 for boiling.

흡수식 냉온수기 증발기용 전열관의 전열성능에 관한 연구 (A-Study on The Heat Transfer Performance of Evaporator Heat Transfer Tube for Absorption Chiller)

  • 권오경;차동안;윤재호;김효상
    • 설비공학논문집
    • /
    • 제21권4호
    • /
    • pp.215-221
    • /
    • 2009
  • The objectives of this paper are to measure the heat transfer and pressure drop of the heat transfer tube for an evaporator of absorption system applications. Five types of heat transfer tubes with different shape and heat transfer area are tested in the present experiment. Heat transfer and pressure drop performance of heat transfer tubes are measured in various operating conditions, and compared each other. The results show that the heat transfer coefficient of thermoexcel notch tube increases about 79.6% and 45.3% at the film Reynolds number 69.7 compared with that of bare tube and low fin tube, respectively. The thermoexcel notch tube is show the best performance considering pressure drop and heat transfer coefficient.

Trajectory Optimization Operations for Satellites in Elliptic Orbits

  • Won, Chang-Hee;Mo, Hee-Sook;Kim, In-Jun;Lee, Seong-Pal
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.238-243
    • /
    • 1999
  • Minimum-fuel and -time orbit transfer are two major goals of the satellite trajectory optimization. In this paper, we consider satellites in two coplanar elliptic orbits when the apsidal lines coincide, and analytically find the conditions for the two-impulse minimum-time transfer orbit using Lambert's theorem. The transfer time is a decreasing function of a variable related to the transfer orbit's semimajor axis in the minimum-time case. In the minimum-time case, there is no unique minimum-time solution, but there is a limiting solution. However, there exists a unique solution in the case of minimum-fuel transfer, fur which we find analytically the necessary and sufficient conditions. As a special case, we consider when the transfer angle is one hundred and eighty degrees. In this case, we show that we obtain the classical fuel-optimal Hohmann transfer orbit. We also derive the Hohmann transfer rime and delta-velocity equations from more general equations, which are obtained using Lambert's theorem. We note the tradeoff between minimum-time and - fuel transfer. An optimal coplanar orbit maneuver algorithm to trade off the minimum-time goal against the minimum-fuel goal is proposed. Finally, the numerical simulation results are given to demonstrate the derived theory and the algorithm.

  • PDF

Heat and mass transfer analysis in air gap membrane distillation process for desalination

  • Pangarkar, Bhausaheb L.;Sane, Mukund G.
    • Membrane and Water Treatment
    • /
    • 제2권3호
    • /
    • pp.159-173
    • /
    • 2011
  • The air gap membrane distillation (AGMD) process was applied for water desalination. The main objective of the present work was to study the heat and mass transfer mechanism of the process. The experiments were performed on a flat sheet module using aqueous NaCl solutions as a feed. The membrane employed was hydrophobic PTFE of pore size 0.22 ${\mu}m$. A mathematical model is proposed to evaluate the membrane mass transfer coefficient, thermal boundary layers' heat transfer coefficients, membrane / liquid interface temperatures and the temperature polarization coefficients. The mass transfer model was validated by the experimentally and fitted well with the combined Knudsen and molecular diffusion mechanism. The mass transfer coefficient increased with an increase in feed bulk temperature. The experimental parameters such as, feed temperature, 313 to 333 K, feed velocity, 0.8 to 1.8 m/s (turbulent flow region) were analyzed. The permeation fluxes increased with feed temperature and velocity. The effect of feed bulk temperature on the boundary layers' heat transfer coefficients was shown and fairly discussed. The temperature polarization coefficient increased with feed velocity and decreased with temperature. The values obtained were 0.56 to 0.82, indicating the effective heat transfer of the system. The fouling was observed during the 90 h experimental run in the application of natural ground water and seawater. The time dependent fouling resistance can be added in the total transport resistance.

EXPERIMENTAL INVESTIGATION OF CONVECTIVE HEAT TRANSFER IN A NARROW RECTANGULAR CHANNEL FOR UPWARD AND DOWNWARD FLOWS

  • Jo, Daeseong;Al-Yahia, Omar S.;Altamimi, Raga'i M.;Park, Jonghark;Chae, Heetaek
    • Nuclear Engineering and Technology
    • /
    • 제46권2호
    • /
    • pp.195-206
    • /
    • 2014
  • Heat transfer characteristics in a narrow rectangular channel are experimentally investigated for upward and downward flows. The experimental data obtained are compared with existing data and predictions by many correlations. Based on the observations, there are differences from others: (1) there are no different heat transfer characteristics between upward and downward flows, (2) most of the existing correlations under-estimate heat transfer characteristics, and (3) existing correlations do not predict the high heat transfer in the entrance region for a wide range of Re. In addition, there are a few heat transfer correlations applicable to narrow rectangular channels. Therefore, a new set of correlations is proposed with and without consideration of the entrance region. Without consideration of the entrance region, heat transfer characteristics are expressed as a function of Re and Pr for turbulent flows, and as a function of Gz for laminar flows. The correlation proposed for turbulent and laminar flows has errors of ${\pm}18.25$ and ${\pm}13.62%$, respectively. With consideration of the entrance region, the heat transfer characteristics are expressed as a function of Re, Pr, and $z^*$ for both laminar and turbulent flows. The correlation for turbulent and laminar flows has errors of ${\pm}19.5$ and ${\pm}22.0%$, respectively.

해외자회사 환경요인이 국제기술이전 및 혁신성과에 미치는 영향 : S-C-P 패러다임 관점에서 (The Influence of External Environmental Factors on Technology Transfer between Foreign MNCs and Local Subsidiaries: Based on SCP Paradigm)

  • 정재휘
    • 지식경영연구
    • /
    • 제20권1호
    • /
    • pp.231-249
    • /
    • 2019
  • Technology transfer from a multinational company to a local subsidiary is essential for successful local market operations. This study aims to analyze the impact of market, cultural and institutional environmental factors on international technology transfer and innovation performance based on the S-C-P paradigm. We collected data from one hundred ninety-five subsidiaries of Korean parent firms located in seventeen countries and used structural equation modeling to test hypotheses. The analysis findings are as follow; First, both market and cultural environment directly affect international technology transfer. However, institutional environment such as protection of intellectual property does not affect international technology transfer. Due to the less risk of technology disclosure involved in technology transfer within the MNE organization can be not relationship between protection of intellectual property in the host country and the foreign subsidiary's transfer of technology. The risk of infringement of intellectual property is relatively low in intra-firm transfer of technology. Second, the technology introduced from the parent company has a positive effect on the innovation performance of local subsidiaries. This implies that multinational companies that have entered unfamiliar overseas markets should be able to effectively transfer the inherent advantages of the parent company to their overseas subsidiaries, and that their ability to adapt to the local environment is important.

해양 구조물용 공조덕트 열유동에 관한 수치해석 (Numerical Analysis on the Thermal and Fluid in Air Conditioning Duct for Marine Offshore)

  • 이중섭;이병호;진도훈
    • 한국기계가공학회지
    • /
    • 제18권2호
    • /
    • pp.7-13
    • /
    • 2019
  • This study is about distributions of heat transfer in air conditioning duct used for marine and oil drilling ship. As the convective heat transfer coefficient increased, heat transfer was conducted dynamically to inside as it exited to the outlet of duct. So, it was checked that the amount of heat transfer generated at duct increased as the convective heat transfer coefficient increased. In case the convective heat transfer coefficient was low, the temperature of duct showed the relatively high temperature distribution due to the temperature influence of internal fluid as the heat transfer between the outside and inside of the duct. In case of temperature distribution generated the volume of the duct along the change of the convective heat transfer coefficient, it was found out that the temperature descended as heat transfer was promoted and the convective heat transfer coefficient increased.

흡수,방사 및 선형비등방 산란 매질을 포함하는 밀폐공간내의 자연대류- 복사열전달에 대한 수치해석 (Numerical Analysis of Natural Convection-Radiation Heat Transfer in an Enclosure Containing Absorbing, emitting and Linear Anisotropic Scattering Medium)

  • 차상명;김종열;박희용
    • 대한기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.952-964
    • /
    • 1992
  • 본 연구에서는 2차원 정사각형 밀폐공간내에 열복사를 흡수, 방사 및 비등방 산란하는 매질이 존재할 때 자연대류와 복사의 상호작용을 선형 비등방 산란을 가정 하고 복사열전달의 계산시 P-N 근사법을 이용하여 해석하였다. 수치계산을 통하여 Planck 수, 산란알베도, 광학두께, 벽방사율 및 비등방 산란이 유동 및 온도 특성 그리고 열전달에 미치는 영향을 조사하였다.