• Title/Summary/Keyword: Transfer stability

Search Result 954, Processing Time 0.032 seconds

Fabrication of suction denture by using the individual tray duplicated an existing denture through scan and milling process: A case report (스캔 및 밀링을 통해 기존 의치를 복제한 개인트레이를 이용한 흡착식 의치 제작 증례)

  • Park, Minhyuk;Kee, Wonjin;Yang, Hongso;Park, Sang-Won;Yun, Kwi-Dug;Park, Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.3
    • /
    • pp.221-227
    • /
    • 2020
  • In the case of complete edentulous patients, as the mandibular alveolar bone absorption progresses, the maintenance and stability of the existing dentures, which had satisfactory functions in the past, are deteriorated. Despite of the need to fabricate new dentures, they often hesitate due to physical burdens on the duration and intensity of future treatment progress due to the effects of aging and systemic diseases. In the case of these completely edentulous patients, it is necessary to consider the treatment goals that can reduce the number of visits and the adaptation period for new dentures before starting the treatment. This case is a case of producing complete dentures of elderly patients with deteriorated physical ability. In addition to producing suction dentures through preliminary and definitive closed mouth functional impression suggested by Sato, CAD / CAM technique was used to transfer occlusal functional information of existing dentures to facilitate adaptation to new dentures.

Facile Synthesis of In2S3 Modified Ag3PO4 Nanocomposites with Improved Photoelectrochemical Properties and Stabilities

  • Zeng, Yi-Kai;Bo, Shenyu;Wang, Jun-hui;Cui, Bin;Gu, Hao;Zhu, Lei;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.30 no.11
    • /
    • pp.601-608
    • /
    • 2020
  • In this work, Ag3PO4/In2S3 nanocomposites with low loading of In2S3 (5-15 wt %) are fabricated by two step chemical precipitation approach. The microstructure, composition and improved photoelectrochemical properties of the as-prepared composites are studied by X-ray diffraction pattern (XRD), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photocurrent density, EIS and amperometric i-t curve analysis. It is found that most of In2S3 nanoparticles are deposited on the surfaces of Ag3PO4. The as-prepared Ag3PO4/In2S3 composite (10 wt%) is selected and investigated by SEM and TEM, which exhibits special morphology consisting of lager size substrate (Ag3PO4), particles and some nanosheets (In2S3). The introduction of In2S3 is effective at improving the charge separation and transfer efficiency of Ag3PO4/In2S3, resulting in an enhancement of photoelectric behavior. The origin of the enhanced photoelectrochemical activity of the In2S3-modified Ag3PO4 may be due to the improved charge separation, photocurrent stability and oriented electrons transport pathways in environment and energy applications.

Digitalization of the Nuclear Steam Generator Level Control System (증기발생기 수위조절 시스템의 디지탈화)

  • Lee, Yoon-Joon;Lee, Un-Chul
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.125-135
    • /
    • 1993
  • The safe and efficient operation of nuclear plants is recognized to be accomplished through the application of plant automation using digital technology, which is one of main targets of the next generation nuclear plants. For plant level automation, it is first required that each major subsystem be digitalized, and the steam generator water level control system is discussed in this study. The transfer functions between inputs and the level are derived by employing the thermal hydraulic model of the steam generator and are applied to the analysis of the current three-element control system. Since the control scheme in this study includes the steam generator itself as a process plant, the system order is high and the numerical instability arises in digitalizing. Together with this, the unreliability of the feedwater feedback signal at low power level leads to the proposal of a two-element control system with a proper digital controller. The digital PI controller developed for this system has the initial power adaptive gain and integration time constant. And it makes the overall system response satisfy the stability and other necessary control specifications simultaneously. Since the two-element control system using this controller depends on the initial power only, it is simple to define and it shows a similar level response behavior to that of its corresponding analog system.

  • PDF

Mixed Carbon/Polypyrrole Electrodes Doped with 2-Naphthalenesulfonic Acid for Supercapacitor (2-Naphthalenesulfonic Acid로 도핑된 혼합카본/폴리피롤을 이용한 Supercapacitor용 전극)

  • Jang, In-Young;Kang, An-Soo
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.425-431
    • /
    • 2005
  • New type of supercapacitor using high surface area activated carbons mixed with high conductivity polypyrrole (Ppy) has been prepared in order to achieve low impedance and high energy density. Mixed carbons of BP-20 and MSP-20 were used as the active electrode material, and polypyrrole doped with 2-naphthalenesulfonic acid (2-NSA) and carbon black (Super P) as conducting agents were added to activated carbons in order to enhance good electric conductivity. Electrodes prepared with the activated electrode materials and the conducting agents were added to a solution of organic binder [P(VdF-co-HFP) / NMP]. The ratio of optimum electrode composition was 78 : 17 : 5 wt.% of (MSP20 : BP-20=1 : 1), (Super P : Ppy=10 : 7) and P(VdF-co-HFP) respectively. The performance of unit cell with addition of 7 wt% Ppy have shown specific capacitance of 28.02 F/g, DC-ESR of $1.34{\Omega}$, AC-ESR of $0.36{\Omega}$, specific energy of 19.87 Wh/kg and specific power of 9.77 kW/kg. With addition of Ppy, quick charge-discharge of unit cell was possible because of low ESR, low charge transfer resistance and quick reaction rate. And good stability up to 500 chargedischarge cycles were retained about 80% of their original capacity. It was concluded that the specific capacitance originated highly from compound phenomena of the pseudocapacitance by oxidation-reduction of polypyrrole and the nonfaradaic capacitance by adsorption-desorption of activated carbons.

A study on job-satisfaction and Turn-over(Transferability) of Dental Technicians in Korea (한국 치과기공사의 직무만족과 직장이동에 관한 연구)

  • Lim, Byung-Chul
    • Journal of Technologic Dentistry
    • /
    • v.11 no.1
    • /
    • pp.71-81
    • /
    • 1989
  • This study was aimed for bettering productivity and technical level of the dental 1 aboratory, and helping the dental technician's benefits and rights, and then endowing them some belonged atmospher and stability on their post by Improving job- satisfaction and maintaining the transferability of one's post at a proper limitation. Therefore, 320 dental technicians extracted randomly from all the technicians working at 494 dental laboratories were subjected for this study. The approach to the study was a way through some postal questionaires executed from March 29, 1988 until May 4, the same year, in which total 254 technicians answered, showing 79% resp"nserate. responserate. The data-analysis was done by a model of the dental technician's transferability from their post, as considering Mobley's(1978)-model of post-transferability, and results through the study are as follows : 1. Satisfaction at a given post showed that the married is better than the unmarried(<0.05), and the experienced is better than the inexperienced(P<0.01). 2. Age, sex, educational experience, and one's service-duration did not affect significantly to the respondent's satisfaction on their post, statistically. 3. Satisfaction at a given post differed in adccordance with given conditions of one's post, i. e.,it stowed high when the monthly payment was good(P<0.05), and when too much duty on their job was given, it was the worst as shown in an example of the next order, too much

  • PDF

Studies on the Use of Carboxymethylcellulose Sodium Salt Matrix for the Immobilization of Photobacterium phosphoreum (Photobacterium phosphoreum을 고정화하기 위한 Carboxymethylcellulose Sodium Salt [CMC] 담체의 이용성 연구)

  • 이용제;정성제;허문석;전억한
    • KSBB Journal
    • /
    • v.15 no.1
    • /
    • pp.49-54
    • /
    • 2000
  • Bioluminescence of Photobacterium phosphoreum has been used for the detection of pollutants in the environment. Immobilization method was used to maintain the stability of bioluminescence of P. phosphoreum. The carboxymethylcellulose was investigated to find out whether it was suitable for the immobilization of P. phosphoreum as a matrix without disturbing the bioluminescence emission. A maintenance of bioluminescence was determined from the P. phosphoreum immobilized on the various concentrations of carboxymethylcellulose. A relatively high bioluminescence intensity was shown with immobilized cells on 1%(w/v) carboxymethylcellulose. The effect of carboxymethylcellulose concentrations on the sensitivity of Crcompounds including $Na_{2}CrO_{4}$, $K_{2}CrO_{4}$, $CrO_{3}$, CrK$(SO_4)_{2}$ and $CrCl_{3}$ to the bioluminescence intensity. The calculated $EC_{50}$ showed that the linear relations between such substances and bioluminesence intensity were established.

  • PDF

$TiO_2$ Thin Film Patterning on Modified Silicon Surfaces by MOCVD and Microcontact Printing Method

  • 강병창;이종현;정덕영;이순보;부진효
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.77-77
    • /
    • 2000
  • Titanium oxide (TiO2) thin films have valuable properties such as a high refractive index, excellent transmittance in the visible and near-IR frequency, and high chemical stability. Therefore it is extensively used in anti-reflection coating, sensor, and photocatalysis as electrical and optical applications. Specially, TiO2 have a high dielectric constant of 180 along the c axis and 90 along the a axis, so it is highlighted in fabricating dielectric capacitors in micro electronic devices. A variety of methods have been used to produce patterned self-assembled monolayers (SAMs), including microcontact printing ($\mu$CP), UV-photolithotgraphy, e-beam lithography, scanned-probe based micro-machining, and atom-lithography. Above all, thin film fabrication on $\mu$CP modified surface is a potentially low-cost, high-throughput method, because it does not require expensive photolithographic equipment, and it produce micrometer scale patterns in thin film materials. The patterned SAMs were used as thin resists, to transfer patterns onto thin films either by chemical etching or by selective deposition. In this study, we deposited TiO2 thin films on Si (1000 substrateds using titanium (IV) isopropoxide ([Ti(O(C3H7)4)] ; TIP as a single molecular precursor at deposition temperature in the range of 300-$700^{\circ}C$ without any carrier and bubbler gas. Crack-free, highly oriented TiO2 polycrystalline thin films with anatase phase and stoichimetric ratio of Ti and O were successfully deposited on Si(100) at temperature as low as 50$0^{\circ}C$. XRD and TED data showed that below 50$0^{\circ}C$, the TiO2 thin films were dominantly grown on Si(100) surfaces in the [211] direction, whereas with increasing the deposition temperature to $700^{\circ}C$, the main films growth direction was changed to be [200]. Two distinct growth behaviors were observed from the Arhenius plots. In addition to deposition of THe TiO2 thin films on Si(100) substrates, patterning of TiO2 thin films was also performed at grown temperature in the range of 300-50$0^{\circ}C$ by MOCVD onto the Si(100) substrates of which surface was modified by organic thin film template. The organic thin film of SAm is obtained by the $\mu$CP method. Alpha-step profile and optical microscope images showed that the boundaries between SAMs areas and selectively deposited TiO2 thin film areas are very definite and sharp. Capacitance - Voltage measurements made on TiO2 films gave a dielectric constant of 29, suggesting a possibility of electronic material applications.

  • PDF

Optimization of anode and electrolyte microstructure for Solid Oxide Fuel Cells (고체산화물 연료전지 연료극 및 전해질 미세구조 최적화)

  • Noh, Jong Hyeok;Myung, Jae-ha
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.525-530
    • /
    • 2019
  • The performance and stability of solid oxide fuel cells (SOFCs) depend on the microstructure of the electrode and electrolyte. In anode, porosity and pore distribution affect the active site and fuel gas transfer. In an electrolyte, density and thickness determine the ohmic resistance. To optimizing these conditions, using costly method cannot be a suitable research plan for aiming at commercialization. To solve these drawbacks, we made high performance unit cells with low cost and highly efficient ceramic processes. We selected the NiO-YSZ cermet that is a commercial anode material and used facile methods like die pressing and dip coating process. The porosity of anode was controlled by the amount of carbon black (CB) pore former from 10 wt% to 20 wt% and final sintering temperature from $1350^{\circ}C$ to $1450^{\circ}C$. To achieve a dense thin film electrolyte, the thickness and microstructure of electrolyte were controlled by changing the YSZ loading (vol%) of the slurry from 1 vol% to 5 vol. From results, we achieved the 40% porosity that is well known as an optimum value in Ni-YSZ anode, by adding 15wt% of CB and sintering at $1350^{\circ}C$. YSZ electrolyte thickness was controllable from $2{\mu}m$ to $28{\mu}m$ and dense microstructure is formed at 3vol% of YSZ loading via dip coating process. Finally, a unit cell composed of Ni-YSZ anode with 40% porosity, YSZ electrolyte with a $22{\mu}m$ thickness and LSM-YSZ cathode had a maximum power density of $1.426Wcm^{-2}$ at $800^{\circ}C$.

A Reaction Kinetic for Selective Catalytic Reduction of NOx with NH3 over Manganese Oxide (NMO, MnO2, Mn2O3) at Low Temperature (망간산화물(NMO, MnO2, Mn2O3)을 이용한 저온에서의 NH3-SCR의 반응속도 연구)

  • Kim, Min Su;Hong, Sung Chang
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.307-314
    • /
    • 2018
  • In this study, NMO (Natural Manganese Ore), $MnO_2$, and $Mn_2O_3$ catalysts were used in the selective catalytic reduction process to remove nitrogen oxides (NOx) using $NH_3$ as a reducing agent at low temperatures in the presence of oxygen. In the case of the NMO (Natural Manganese Ore), it was confirmed that the conversion of nitrogen oxides in the stability test did not change even after 100 hours at 423 K. The Kinetics experiments were carried out within the range where heat and mass transfer were not factors. From a steady-state Kinetics study, it was found that the low-temperature SCR reaction was zero order with the respect to $NH_3$ and 0.41 ~ 0.57 order with the respect to NO and 0.13 ~ 0.26 order with the respect to $O_2$. As temperature increases, the reaction order decreases as a result of $NH_3$ and oxygen concentration. It was confirmed that the reaction between the $NH_3$ dissociated and adsorbedon the catalyst surface and the gaseous nitrogen monoxide (E-R model) and the reaction with the adsorbed nitrogen monoxide (L-H model) occur.

Research of Cross-linked Hydrocarbon based Polymer Electrolyte Membranes for Polymer Electrolyte Membrane Fuel Cell Applications (고분자 전해질 막 연료전지 응용을 위한 탄화수소계 기반 가교 전해질 막의 연구동향)

  • Ko, Hansol;Kim, Mijeong;Nam, Sang Yong;Kim, Kihyun
    • Membrane Journal
    • /
    • v.30 no.6
    • /
    • pp.395-408
    • /
    • 2020
  • Polymer electrolyte membrane fuel cells (PEMFCs) have gained much attention as eco-friendly energy conversion devices without emission of environmental pollutant. Polymer electrolyte membrane (PEM) that can transfer proton from anode to cathode and also prevent fuel cross-over has been regarded as a key component of PEMFCs. Although perfluorinated polymer membranes such as Nafion® were already commercialized in PEMFCs, their high cost and toxic byproduct generated by degradation have still limited the wide spread of PEMFCs. To overcome these issues, development of hydrocarbon based PEMs have been studied. Incorporation of cross-linked structure into the hydrocarbon based PEM system has been reported to fabricate the PEMs showing both high proton conductivity and outstanding physicochemical stability. This study focused on the various cross-linking strategies to the preparation of cross-linked PEMs based on hydrocarbon polymers with ion conducting groups for application in PEMFCs.