• Title/Summary/Keyword: Transfer resistance

Search Result 1,286, Processing Time 0.033 seconds

A Study on the Heat Dissipation Characteristics of Layered Heat Sink for CPU Cooling (CPU 냉각을 위한 적층형 히트싱크의 방열 특성 연구)

  • Lee, Kyu-Chill;Kim, Joung-Ha;Yun, Jae-Ho;Park, Sang-Il;Choi, Yun-Ho;Kwon, Oh-Kyung
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.182-187
    • /
    • 2006
  • This research presented the heat resistance characteristics of heat sink which is newly designed through the experiment. For the same volume and base plate of heat sinks, the experiment of heat transfer characteristics was conducted for forced convection of layered type heat sink. The heat transfer and pressure drop characteristics of the layered type heat sink were compared for the various kinds of fin pitches, fin heights and heights of heat sink. The results show that thermal resistance is decreased as the height of heat sink increases and the fin height and fin pitch decrease, From the experimental data of layered type heat sink, the correlation equation of Nusselt number was obtained as follows ; $$Nu=0.845{\cdot}Re^{0.393}{\cdot}(\frac{f_h}{D_h})^{0.160}{\cdot}(\frac{f_p}{D_h})^{0.372}{\cdot}(\frac{H_{hs}}{D_h})^{-0.942}$$

  • PDF

An Experimental Study on Ultrasonic Spray Cooling of Heat Pipe Condenser (히트파이프 응축부의 초음파 분무냉각에 관한 실험적 연구)

  • 김영찬;한양호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.77-83
    • /
    • 2004
  • In this study, the spray cooling heat transfer and working characteristics of the screen wick heat pipe with ultrasonic spray cooling system in condenser were experimentally investigated. The heat pipe was made of copper tube 300 mm long with inner diameter of 11.1 mm. The evaporator and condenser lengths of heat pipe were 40, 200 mm and the wick structure consists of two layer of 100 mesh copper screen. The experimental results show that the ultrasonic spray cooling increases the heat transfer rate on the condenser surface, and the total thermal resistance of heat pipe system decreases remarkably. A comparison is made for the two working fluids, water and ethanol. The surface temperature of the ethanol tube in evaporator section becomes higher than that of the water tube. Thus, the experimental result shows that water is more useful than ethanol as the working fluid because of increasing the operational limit within this experimental conditions.

A study on the phase change in the cylindrical mold by the enthalpy method (엔탈피법을 이용한 원통형 몰드내에서의 상변화과정에 관한 연구)

  • 여문수;최상경;김문철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.891-897
    • /
    • 1999
  • The heat transfer characteristics at the interface between the mold and the casting is one of the major factors for the solidification speed which determines the casting structures. The thermal resistance exists due to air gap formation at the mold/casting interface during the freezing process. In this study one dimensional Stefan problem with the air-gap resistance in the cylindrical mold is considered and the heat transfer characteristics is numerically examined by using the enthalpy method which is convenient in solving the Stefan problem with mushy zone. The present results agreed very well with those of previous papers. The effects of major parameters such as thermal conductivity, heat transfer coefficient of mold, on the thermal characteristics are investigated.

  • PDF

Performance of an Annular Heat Pipe (환상 열파이프의 열전달특성 연구)

  • Song Tae-Ho;Lee Chung-Oh
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 1979
  • Heat transfer characteristics of an annular heat pipe is investigated theoretically and experimentally. An annular heat pipe transports maximum heat which is found to be a cubic polynomial function of the thickness of annulus when the annulus becomes large, maximum heat transfer rate Is limited by boiling criterion. The limit decreases inversely proportional to the thickuess of annulus. Theoretical formula for thermal resistance of annular heat pipe Is proposed. Experimental results on the maximum heat transfer rate satisfactorily agree with theory. Measured thermal resistance is found to be lower than the predicted results as the thickness of annulus becomes large.

  • PDF

The Formation Technique of Thin Film Heaters for Heat Transfer Components (열교환 부품용 발열체 형성기술)

  • 조남인;김민철
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.4
    • /
    • pp.31-35
    • /
    • 2003
  • We present a formation technique of thin film heater for heat transfer components. Thin film structures of Cr-Si have been prepared on top of alumina substrates by magnetron sputtering. More samples of Mo thin films were prepared on silicon oxide and silicon nitride substrates by electron beam evaporation technology. The electrical properties of the thin film structures were measured up to the temperature of $500^{\circ}C$. The thickness of the thin films was ranged to about 1 um, and a post annealing up to $900^{\circ}C$ was carried out to achieve more reliable film structures. In measurements of temperature coefficient of resistance (TCR), chrome-rich films show the metallic properties; whereas silicon-rich films do the semiconductor properties. Optimal composition between Cr and Si was obtained as 1 : 2, and there is 20% change or less of surface resistance from room temperature to $500^{\circ}C$. Scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) were used for the material analysis of the thin films.

  • PDF

Antimicrobial resistance and transfer of R plasmid of pathogenic Eseherichia coli isolated from poultry in Korea (가금 유래 병원성 대장균의 항균제 내성 및 R plasmid 전달 양상)

  • Sung, Myung-Suk;Kim, Jin-Hyun;Cho, Jae-Keun;Seol, Sung-Yong;Kim, Ki-Seuk
    • Korean Journal of Veterinary Research
    • /
    • v.48 no.3
    • /
    • pp.275-285
    • /
    • 2008
  • Antimicrobial drugs are widely used in poultry industry as growth promoters or to control infectious diseases. However, this practice is reported to have caused high resistance to antimicrobial drugs in normal chicken flora and pathogens. Antimicrobial resistance to Escherichia coli (E. coli) from chicken has been mainly reported in normal flora, but rare in pathogenic organism in Korea, recently. Therefore, this study was conducted to investigate prevalence of antimicrobials resistance, transfer of R plasmid, and association between antimicrobial drug resistance and O serotype of 203 pathogenic E. coli from poultry in Korea during the period from April 2003 to December 2005. These isolates showed a high resistance to tetracycline (Tc, 93.6%), nalidixic acid (Na, 92.6%), streptomycin (Sm, 81.8%), ampicillin (Ap, 77.3%), ciprofloxacin (Ci, 70.9%), sulfisoxazole (Su, 66.5%), and trimethoprim (Tp, 58.1%). Two hundred-one (99.0%) of the isolates were resistant to one or more drugs. They showed 57 different resistant patterns, and the most prevalent resistant pattern among them was Tc, Sin, Su, Ap, Tp, Ci, Na. Sixty-eight (33.8%) of the isolates transferred all or a part of their antimicrobial resistant pattern to the recipient strain by R plasmid. The most common antimicrobial resistant pattern was Tc, Sm, Su, Ap, Tp, Ci, Na in serotype O78, O88 and O15, respectively. These results exhibit high individual and multiple resistance to antimicrobials of pathogenic E. coli from poultry in Korea. They also suggest the needs for surveillance to monitor antimicrobial resistance in pathogenic bacteria that can be potentially transmitted to humans from food animals and to regulate the abuse of antimicrobials on food-producing animals in Korea.

Analytical Study of Fire Resistance Performance of Plant Facilities using Ansys (Ansys를 활용한 플랜트 시설물 내화성능에 대한 해석적 연구)

  • Doo Chan Choi;Min Hyeok Yang;Su Min Oh;So Jin Yang
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.958-967
    • /
    • 2023
  • Purpose: This study aims to analyze the fire resistance performance applied to plant facilities with high fire risk in Korea, secure suitable fire resistance performance, and ensure the fire safety of plant facilities. Method: Using the finite element analysis program Ansys, thermal transfer analysis and structural analysis were performed with fire load and fireproof coating as variables, and the fire resistance performance of plant facilities was analyzed based on the analysis results. Result: The fireproof coating applied to domestic plant facilities failed to secure fire resistance performance when the fire load of hydrocarbon fire presented in UL 1709 was applied, and it was confirmed that the deformation of steel after the fire was also significant. Conclusion: The current fire resistance performance applied to plant facilities in Korea cannot secure fire resistance performance in sudden fire growth and large fire loads like petrochemical plants, and it is necessary to secure fire safety by evaluating suitable fire resistance performance through performance evaluation of plant facilities.

Transient Heat Transfer Analysis and Fire Test for Evaluation on Fire Resistance Performance of A60 Class Deck Penetration Piece (A60급 갑판 관통 관의 방화성능 평가를 위한 과도 열전달 해석과 화재시험)

  • Park, Woo Chang;Song, Chang Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2021
  • A60 class deck penetration piece is a fire-resistance apparatus installed on the deck compartment to protect lives and prevent flame diffusion in fire accidents. In case that the A60 piece is newly developed or its initial design is revised, it is important to verify the fire resistance performance using a fire test procedure (FTP) code. In this paper, transient heat transfer analysis was carried out to evaluate the fire resistance design compatibility of the newly devised A60 piece. The analysis results were verified via a fire test. The heat transfer characteristics were also investigated by comparing design specifications, such as diameter, internal configuration, and material type. The analysis was performed using ABAQUS/Implicit, and the fire test was performed according to the FTP code. The fire resistance performance of the A60 pieces satisfied the safety of life at sea convention regulation. The material type was the most important design specification for the A60 piece. Based on the maximum test temperature, the measured temperature of SUS316L material was 25% lower than that of S45C on average. The differences between thermal conductivity and specific heat of each material were 17% and 58%, respectively.

Load-Settlement Behavior of Rock-socketed Drilled Shafts by Bi-directional Pile Load Test (양방향 말뚝선단재하시험에 의한 암반근입 현장타설말뚝의 하중-침하거동 분석)

  • Seol, Hoon-Il;Jeong, Sang-Seom;Han, Keun-Taek;Kim, Jae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.61-70
    • /
    • 2008
  • Load settlement behaviors and load transfer characteristics of rock-socketed pile subjected bi-directional load at pile tip were investigated using bi-directional pile load tests (BD PLT) performed on ten large-diameter drilled shafts at four sites. Based on test results, additional pile-toe displacement ($w_{bs}$) by coupled soil resistance was analyzed, and thus equivalent top loaded load-settlement curve of pile subjected bi-directional load was proposed by taking into account the coupled soil resistance. Through comparisons with field case studies, it is found that for test piles there exists effect of coupled soil resistance, which is represented by wbs, and thus an equivalent curve obtained by existing uncoupled methods can overestimate bearing capacity of piles by BD PLT. On the other hand, the analysis by the proposed method with soil coupling effect has a considerably larger settlement when compared with the results by uncoupled load transfer method and estimates reasonable load-settlement behaviors of test piles. In case of pile socketed in high strength rocks, however, effects of coupled soil resistance can be neglected.

Heat transfer coefficients for single-Phase flow in a micro-fin tube (마이크로휜 관내의 단상유동 열전달계수)

  • 권정태;김무환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.423-430
    • /
    • 1998
  • Single phase heat transfer coefficients were measured for turbulent water flow in a micro-fin tube by using Wilson plot technique. An experiment for counterflow heat exchange between the micro-fin tube and its outer annulus passage was performed. The annulus side heat transfer resistance was varied and the overall heat transfer coefficients were measured. The single-phase heat transfer coefficients in a micro-fin tube were obtained by Wilson plot technique. Nusselt numbers based on the real heat transfer area and the nominal area were about 35% and 50% larger than those for smooth tube respectively Also, single-phase heat transfer correlations based on real heat transfer area and nominal area have been proposed for a micro-fin tube.

  • PDF