• Title/Summary/Keyword: Transfer forming

Search Result 272, Processing Time 0.03 seconds

Study on the Reduction of Energy Consumption in the Pulsed Corona Discharge Process for NOx Removal (질소산화물 제거를 위한 펄스코로나 방전공정의 에너지 소모 저감에 관한 연구)

  • 정재우;손병학;조무현;목영선;남궁원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.4
    • /
    • pp.475-483
    • /
    • 1999
  • A lab-scale test was carried out to study the reduction of electrical energy consumption in the pulsed corona discharge process for nitrogen oxides removal. The experiment was mainly focused on 1) the activation of pollution removal reactions by chemical additives and 2) the optimization of electrical circuit for the efficient energy transfer from the power supply to the corona reactor. Hydrocarbon chemical additives used in the experiment are thought to be responsible for the enhancement of the NO conversion through the chain reactions of free radicals such as, R, RCO, and RO. Electrical energy consumption per converted NO molecule has a minimum value of 17 eV when pentanol is injected. When ethylene and propylene are injected, 30 eV and 22 eV of electrical energy consumption is required for the conversion of NO molecule respectively. The ratio of the pulse forming capacitance$(C_e)$ to the reactor capacitance$(C_R)$ plays an important role in the energy transfer efficiency to the reactor. Maximum energy transfer efficiency of approximately 72% could be obtained by using the pulse forming capacitance which is 3.4 times larger than the reactor capacitance, and also the maximum NO conversion efficiency was observed with the same condition.

  • PDF

Lyman-alpha radiative transfer through outflowing halo models to understand both the observed spectra and surface brightness profiles of Lyman-alpha halos around high-z star-forming galaxies

  • Song, Hyunmi;Seon, Kwang-il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.59.3-59.3
    • /
    • 2018
  • With a recent observational study of extended Lyman-alpha halos around individual high-z star-forming galaxies by Leclercq et al. (2017) using MUSE, we perform radiative transfer calculations to see if Lyman-alpha scattering can explain the spatial extents of the halos together with their spectra. We adopt a spherically-symmetric halo model in which Lyman-alpha sources and neutral hydrogen (HI) medium have exponential density distributions. The HI medium is set to have outflowing motion based on a momentum-driven wind scenario in a gravitational potential well. We run our Lyman-alpha radiative transfer code, LaRT, upon this halo model for various sets of parameters regarding the HI medium such as temperature, optical depth, density scale radius, outflow velocities, and dust content. We analyze simulation results to see the impact of each parameter on Lyman-alpha spectra and surface brightness profiles, and degeneracies between the parameters. We also find a parameter set that best reproduces simultaneously the observed spectra and surface brightness profiles of the MUSE Lyman-alpha halos.

  • PDF

Forming Characteristics with Cavity Pressure and Temperature Signal Inside Mold in High-Pressure Resin Transfer Molding Process of Carbon Fiber Reinforced Composite Material (탄소섬유강화복합소재의 고압수지이송성형공정에서 금형 내 캐비티의 압력 및 온도신호에 따른 성형특성)

  • Han, Beom-Jeong;Jeong, Yong-Chai;Kim, Sung-Ryul;Kim, Ro-Won;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.81-86
    • /
    • 2017
  • The high-pressure resin transfer molding (HP-RTM) process has a very effective for the mass production of carbon fiber reinforced plastic (CFRP) for light weight in the automotive industry. In developing robust equipment, new process and fast cure matrix systems reduces significantly the cycle time less than 5 minutes in recent years. This paper describes the cavity pressure, temperature and molding characteristics of the HP-RTM process. The HP-RTM mold was equipped with two cavity pressure sensors and three temperature sensors. The cavity pressure characteristics of the HP-RTM injection, pressurization, and curing processes were studied. This experiment was conducted with selected process parameters such as mold cap size, maximum press force, and injection volume. Consequently, this monitoring method provides correlations between the selected process parameters and final forming characteristics in this work.

Numerical Study of Heat Transfer Enhancement on Microchannel Plate Heat Exchanger with Channel Shape (채널 형상에 따른 마이크로채널 판형 열교환기 열전달 성능 향상에 관한 수치 연구)

  • Jeon, Seung-Won;Kim, Yoon-Ho;Lee, Kyu-Jung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1888-1893
    • /
    • 2007
  • In this study, the microchannel plated heat exchanger were numerically studied for the enhancement of heat transfer in the channel configuration. Unit cold and hot fluid region with the microchannel were modeled and periodic boundary condition at the side wall was applied to continuously repeating geometry. The material of micro-structured plate is STS304 and working fluid is water. Triangular obstacles were placed in micro channel to enhance heat transfer. The performance of microchannel plated heat exchangers were numerically investigated with various obstacle configuration and Reynolds number under the parallel and counter flows. Heat transfer rate has increased about 18% compared with straight channel, but pressure drop also increased about 3.5 times. The main factor of increasing of pressure drop and heat transfer rate is considered that the momentum was lost to collide against obstacles, generation of secondary flow and boundary layer separation, wake and vortex forming phenomena.

  • PDF

A Polymer Interface for Varying Electron Transfer Rate with Electrochemically Formed Gold Nanoparticles from Spontaneously Incorporated Tetrachloroaurate(III) Ions

  • Song, Ji-Seon;Kang, Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1683-1688
    • /
    • 2007
  • This paper presents a novel simple method for introducing gold nanoparticles in a poly(4-vinylpyridine) (PVP) polymer layer over a glassy carbon (GC) electrode with the aim of forming a tunable electrochemical interface against a cationic ruthenium complex. Initially, AuCl4 ? ions were spontaneously incorporated into a polymer layer containing positively charged pyridine rings in an acidic media by ion exchange. A negative potential was then applied to electrochemically reduce the incorporated AuCl4 ? ions to gold nanoparticles, which was confirmed by the FE-SEM images. The PVP layer with an appropriate thickness over the electrode blocked electron transfer between the electrode and the solution phase for the redox reactions of the cationic Ru(NH3)6 2+ ions. However, the introduction of gold nanoparticles into the polymer layer recovered the electron transfer. In addition, the electron transfer rate between the two phases could be tuned by controlling the number density of gold nanoparticles.

Coupled Analysis of Heat Transfer and Thermoelastoplastic deformation (열전달과 열탄소성변형의 연결해석)

  • 이용기;한흥남;오규환;이동녕
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.47-54
    • /
    • 1994
  • The study is concerned with the coupled analysis of heat transfer and thermoelastoplastic deformation. The thermoelastoplastic model is very useful for the analysis of residual stress and the analysis of thermal stress as well as the analysis of metal forming. Heat of deformation, phase transformation and contact heat transfer boundary are considered. The contact heat transfer boundary is treated by the interpolation of shape function. The analysis of deformation and the analysis of heat transfer are carried out for the could upsetting and the hot rolling. The computed results are found to be in good agreement with the experimental results.

  • PDF

Elucidation of photo-induced electron transfer in a loop-forming peptide: Dye-Ala-Gly-Gln-Tyr

  • Lee, Hwiin;Kim, Jeongyun;Kwon, Yong-Uk;Lee, Minyung
    • Rapid Communication in Photoscience
    • /
    • v.4 no.3
    • /
    • pp.59-62
    • /
    • 2015
  • We investigated photo-induced electron transfer (PET) in a dye-labeled peptide, fluorophore-Ala-Gly-Gln-Tyr, employing time-resolved fluorescence. As an effort to develop new functional dyes, we studied an acriflavine derivative for the electron-acceptor in the excited state from tyrosine, an electrondonor in the ground-state. The pH dependence of the fluorescence lifetime of the model peptide indicates that electron transfer between the excited dye and tyrosine occurs when the tyrosine is deprotonated. The proton-coupled electron transfer appears to be sequential rather than concerted. We also report direct time measurements on the end-to-end loop formation processes of the peptide in water.

Determination of Optimum Blank Shape to Minimize the Root Gap during TIG Welding in Hot Curvature Forming of Al5083 Thick Plate (열간 곡면성형된 Al5083 후판의 TIG 용접 시 루트갭 최소화를 위한 최적 블랭크 형상 결정)

  • Lee, Jeong Min;Ko, Dae Hoon;Lee, Kyung Hun;Lee, Chan Joo;Kim, Byung Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.815-823
    • /
    • 2013
  • The hot curvature forming of large aluminum plates is a process used to produce spherical liquefied natural gas (LNG) tanks. In this study, we describe a method to determine the optimum shape of blanks to minimize the root gap in the forming process. The method proposed in this study was applied to a small-scale model for thick plates with a curvature of 1500 mm and thickness of 6 mm. First, the shape of the curved shells was determined as the target shape, and then a coordinate transform was used to determine the optimum blank shape, which was then iteratively modified using the results of finite element method (FEM) simulations, including heat transfer, until the shape error was minimized. Experiments in forming using Al5083 thick plate were carried out, showing that the method can determine the optimum blank shape within an allowable root gap of 0.1 mm.

Prediction of Phase Transformation of Boron Steel Sheet during Hot Press Forming using Material Properties Modeler and DEFORMTM-HT (보론 강판의 핫 프레스 포밍 공정 시 재료 물성 모델러와 DEFORMTM-HT를 활용한 상 변태 예측)

  • Kang, K.P.;Lee, K.H.;Kim, Y.S.;Ji, M.W.;Suh, Y.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.4
    • /
    • pp.249-256
    • /
    • 2008
  • Combined phase transformation and heat transfer was considered on the simulation of hot press forming process, using material properties modeler, $JMatPro^{(R)}$ and a finite element package, $DEFORM^{TM}$-HT. In order to obtain high temperature mechanical properties and flow curves for different phases, a material properties modeler, $JMatPro^{(R)}$ was used, avoiding expensive and extensive high temperature materials tests. The results successfully show that the strength of hot press forming parts may exhibit different strength in the same parts, depending on the contact of blank with tooling. It was also shown effectively that the strength of the parts can be controlled by designing appropriate cooling paths and coolants. This was shown in terms of different heat convection coefficient in the calculation. Overall, current combination of software was shown to be an effective tool for the tool and process design of hot forming process, although the material modeler needs to be additionally verified by an appropriate set of high temperature materials test.