DOI QR코드

DOI QR Code

Elucidation of photo-induced electron transfer in a loop-forming peptide: Dye-Ala-Gly-Gln-Tyr

  • Lee, Hwiin (Department of Chemistry and Nanoscience, EwhaWomans University) ;
  • Kim, Jeongyun (Department of Chemistry and Nanoscience, EwhaWomans University) ;
  • Kwon, Yong-Uk (Department of Chemistry and Nanoscience, EwhaWomans University) ;
  • Lee, Minyung (Department of Chemistry and Nanoscience, EwhaWomans University)
  • Received : 2015.09.14
  • Accepted : 2015.09.20
  • Published : 2015.09.30

Abstract

We investigated photo-induced electron transfer (PET) in a dye-labeled peptide, fluorophore-Ala-Gly-Gln-Tyr, employing time-resolved fluorescence. As an effort to develop new functional dyes, we studied an acriflavine derivative for the electron-acceptor in the excited state from tyrosine, an electrondonor in the ground-state. The pH dependence of the fluorescence lifetime of the model peptide indicates that electron transfer between the excited dye and tyrosine occurs when the tyrosine is deprotonated. The proton-coupled electron transfer appears to be sequential rather than concerted. We also report direct time measurements on the end-to-end loop formation processes of the peptide in water.

Keywords

References

  1. Sjodin, M.; Styring, S.; Akermark, B.;Sun, L.;Hammarstrom, L. J. Am. Chem. Soc. 2000,122,3932-3936. https://doi.org/10.1021/ja993044k
  2. Carra, C.;Iordanova, N.;Hammes-Schiffer, S. J. Am. Chem. Soc.2003, 122, 3932-3936.
  3. Chen, H.;Ahsan,S. S.; Santiago-Berrios, M. B.;Abruna, H. D.; Webb, W. W. J. Am. Chem. Soc.2010, 132, 7244-7245. https://doi.org/10.1021/ja100500k
  4. Wang,Y.; Clark, T. B.; Goodson III,T..J. Phys. Chem. B 2010,114, 7112-7120. https://doi.org/10.1021/jp101496y
  5. Mathes, T.;van Stokkum, I. H. M.;Stierl, M.;Kennis, T. M..J. Biol. Chem.2012, 287, 31725-31738. https://doi.org/10.1074/jbc.M112.391896
  6. Zhang, Y.;Yuan, S.; Yu, R.; Yu, A..J. Phys. Chem. B2013, 117, 7308-7316.
  7. Migliore, A.;Polizzi,N. F.;Therien, M. J.;Beratan,D. N. Chem. Rev.2014,114, 3381-3465. https://doi.org/10.1021/cr4006654
  8. Weinberg,D. R. et al..Chem. Rev.2012, 112, 4016-4093. https://doi.org/10.1021/cr200177j
  9. Lapidus,L. J.; Eaton,W. A.;Hofrichter, J..Proc. Natl. Acad. Sci. USA 2000, 97, 7220-7225. https://doi.org/10.1073/pnas.97.13.7220
  10. Yeh,I.-C.; Hummer, G..J. Am. Chem. Soc.2002, 124, 6563-6568. https://doi.org/10.1021/ja025789n
  11. Roccatano, D.;Nau, W. M.; Zacharias, M. J. Phys. Chem. B2004, 108, 18734-18742. https://doi.org/10.1021/jp0475077
  12. Roccatano, D.;Sahoo, H.; Zacharias, M.;Nau,W. M. J. Phys. Chem. B2007, 111, 2639-2646. https://doi.org/10.1021/jp066418m
  13. Yeh, I.-C.;Wallqvist,A. J. Phys. Chem. B2009, 113, 12382-12390. https://doi.org/10.1021/jp904064z
  14. Sharma, V. K.;Sahare, P. D.;Rastogi,R. C.;Ghoshal, S. K.; Mohan, D. Spectrochim. ActaA2003, 59,1799-1804. https://doi.org/10.1016/S1386-1425(02)00440-7
  15. Manivannan, C.;Sambathkumar, S.;Renganathan, R. Spectrochim. ActaA2013, 114, 316-322. https://doi.org/10.1016/j.saa.2013.05.034
  16. Arden-Jacob J. et al..Phys. Chem. Chem. Phys.2013, 15, 1844-1853. https://doi.org/10.1039/C2CP43493H
  17. Manivannan, C.;Sundaram, K. M.;Sundararaman,M.; Renganathan, R. Spectrochim. ActaA2014, 122, 164-170. https://doi.org/10.1016/j.saa.2013.11.012
  18. Bonin, J.; Costentin, C.; Louault, C.; Robert, M.; Routier, M.; Saveant, J.-M. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 3367-3372. https://doi.org/10.1073/pnas.0914693107
  19. Krishtalik, L. I. Biochim. Biophys. Acta, Bioenerg. 2003, 1604, 13-21. https://doi.org/10.1016/S0005-2728(03)00020-3
  20. Costentin, C.; Robert, M.; Saveant, J. M. J. Am. Chem. Soc. 2007,129, 5870-5879. https://doi.org/10.1021/ja067950q
  21. C. J.; Meyer, T. J.; Thorp, H. H. J. Am. Chem. Soc. 2006, 128, 11020-11021. https://doi.org/10.1021/ja061931z
  22. Dempsey, J. L.; Winkler, J.R.; Gray, H. B. Chem. Rev. 2010, 110, 7024-7039. https://doi.org/10.1021/cr100182b
  23. Stubbe, J.; Nocera, D. G.; Yee, C. S.; Chang, M. C. Y. Chem. Rev. 2003, 103, 2167-2201. https://doi.org/10.1021/cr020421u
  24. Mayer, J. M. Annu. Rev. Phys. Chem. 2004, 55, 363-390 https://doi.org/10.1146/annurev.physchem.55.091602.094446
  25. Moore, G. F.; Hambourger, M.; Gervaldo, M.; Poluektov, O. G.; Rajh, T.; Gust, D.; Moore, T. A.; Moore, A. L. J. Am. Chem. Soc. 2008, 130, 10466-10467. https://doi.org/10.1021/ja803015m
  26. Costentin, C.; Robert, M.; Saveant, J.-M. Acc. Chem. Res. 2010, 43,1019-1029. https://doi.org/10.1021/ar9002812
  27. Johannissen, L. O.; Irebo, T.; Sjodin, M.; Johansson, O.; Hammarstrom, L. J. Phys. Chem. B 2009, 113, 16214-16225. https://doi.org/10.1021/jp9048633
  28. Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta. 1985, 811, 265-322. https://doi.org/10.1016/0304-4173(85)90014-X
  29. Rehm, D.; Weller, A. Isr. J. Chem. 1970, 8, 259-271. https://doi.org/10.1002/ijch.197000029
  30. Wardman, P.J. Phys. Chem. Ref. Data1989, 18, 1637-1755. https://doi.org/10.1063/1.555843