• Title/Summary/Keyword: Transfer film

Search Result 1,077, Processing Time 0.032 seconds

Electromagnetic Interference Shielding Efficiency Characteristics of Ammonia-treated Graphene Oxide (암모니아수 처리된 그래핀 옥사이드의 전자파 차폐효율 특성)

  • Park, Mi-Seon;Yun, Kug Jin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.613-618
    • /
    • 2014
  • In this study, nitrogen doped graphene oxide (GO) was prepared using liquid phase ammonia treatment to improve its electrical properties. Also, the aminated GO was manufactured into a film format and the electromagnetic interference (EMI) shielding efficiency was measured to evaluate its electrical properties. The XPS result showed that the increase of liquid phase ammonia treatment concentration led to the increased nitrogen functional group on the GO surface. The measurement of EMI shielding efficiency reveals that EMI shielding efficiency of the liquid phase ammonia treated GO was better than that of non-treated GO. When GO was treated using the ammonia solution of 21% concentration, the EMI shielding efficiency increased by -5 dB at higher than 2950 MHz. These results were maybe due to the fact that nitrogen functional groups on GO help to improve the absorbance of electromagnetic waves via facile electron transfer.

Thin Film Multijunction Thermal Converter for Low Input Voltage with Low Frequency (저주파수 및 저입력전압용 박막형 다중접합 열전변환기)

  • Hwang, Chan-Soon;Lee, Hyung-Ju;Kim, Jin-Sup;Lee, Jung-Hee;Park, Se-Il;Kwon, Sung-Won
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.145-154
    • /
    • 2002
  • NiCr-heaters with three different thicknesses ranging from 400 nm to 800 nm were fabricated and their characteristics were compared for the purpose of developing a chromel-alumel multijunction thermal converter for low input voltage with low frequency. The thermoelectric effect-induced AC-DC voltage transfer difference of the thermal converter with a built-in NiCr-heater of 400 nm-thickness was ${\pm}0.51{\sim}1.69\;ppm$ in the DC reversing frequency of $40\;Hz{\sim}10\;kHz$ with appling $0.5\;V_{rms}$ and the difference was increased to ${\pm}40{\sim}{\pm}115\;ppm$ in the frequency of $40\;Hz{\sim}1\;MHz$, when both thermoelectric effects and frequency effects were considered, showing the thermal converter would be suitable for the low input voltage application with low frequency.

Coadsorptions of Carbon Monoxide and Oxygen on Polycrystalline Nickel Surface (다결정 니켈 표면에서의 CO 와 $O_2$의 공동흡착)

  • Soon Bo Lee;Jin Hyo Boo;Woo Sub Kim;Woon Sun Ahn
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.12
    • /
    • pp.1019-1024
    • /
    • 1993
  • The coadsorption of carbon monoxide and oxygen on polycrystalline nickel surface has been studied using XPS at the room temperaure. The adsorption of CO on the nickel surface precovered partially with oxygen is found to take place by the following steps: The CO molecules react with the preadsorbed oxygen atoms to liberate $CO_2$ gas at the initial stage of low CO exposures, and they are coadsorbed gradually with the increasing CO exposures. The extent of coadsorption at the higher CO exposures is found to decrease with the increasing degree of oxygen preadsorption. This finding is explained in terms of the reduced adsorption site for CO as a consequence of oxygen preadsorption. The CO molecules preadsorbed on the nickel surface inhibited the adsorption of $O_2$ molecules. The increase of oxygen exposure led to the dissociation of preadsorbed CO, and the NiO layers were formed concurrently. The dissociation was rendered to arise from an oxygen-to-CO energy transfer.

  • PDF

Synthesis and Characterization of Organic Light-Emitting Copolymers Containing Naphthalene

  • Kim, Jung-Sik;Heo, Jun;Kang, Peng-Tao;Kim, Jin-Hak;Jung, Sung-Ouk;Kwon, Soon-Ki;Kim, Un-Kyung;Kim, Yun-Hi
    • Macromolecular Research
    • /
    • v.17 no.2
    • /
    • pp.91-98
    • /
    • 2009
  • Conjugated PPV-derived block copolymers containing 2-ethylhexyloxynaphthalene unit were synthesized and characterized in this study. The resulting polymers were soluble in common organic solvents and showed good thermal stabilities, The weight-average molecular weights ($M_w$) of the copolymers ranged from 246,000 to 475,000 with PDIs of $1.3{\sim}2.1$. The optical properties of these polymers, measured both in a chloroform solution and on a film, showed a maximum absorption at $405{\sim}476\;nm$ for Copolymers $I{\sim}VIII$. In the PL spectra, Copolymers $I{\sim}VIII$ showed maximum peaks at $510{\sim}566\;nm$. The HOMOs, LUMOs and band gaps of the PPV derivatives of Copolymers $I{\sim}VIII$ were $5.30{\sim}5.77$, $3.04{\sim}3.24$, and $2.5{\sim}2.2\;eV$, respectively, The multi-layered, light-emitting diodes of ITO/PEDOT/copolymers/LiF/Al exhibited turn-on voltages of $6{\sim}2.5\;V$ Copolymer VIII exhibited the maximum brightness of $3.657\;cd/m^2$. Particularly, Copolymer VII, with an identical composition of MEH-PPV and naphthalene-PPV, showed a maximum luminance efficiency and power efficiency of 2,63 cd/A and 1.06 lm/W, respectively.

Surface Characteristics of Fouling Resistant Low-Pressure RO Membranes (상업용 내오염성 저압 RO막의 표면 특성 분석)

  • Hong, Seungkwan;Taylor, James;Norberg, David;Lee, Jinwoo;Park, Chanhyuk;Kim, Hana
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • In this study, five commercially available fouling resistant low-pressure RO membranes were investigated for the treatment of seasonally brackish surface water with high organic content (${\approx}24mg/L$). The membranes investigated are LFC-1 (Hydranautics), X20 (Trisep), BW30FR1 (FilmTec), SG (Osmonics), and BE-FR (Saehan). The results of surface characterization revealed that each of these membranes has one or two unique surface characteristics to minimize the adherence of the fouling materials to the membrane. Specifically, the LFC1 membrane features a neutral or low negative surface to minimize electrostatic interactions with charged foulants. The X20, on the other hand, shows a highly negatively charged surface, and thus, is expected to perform well with feed waters containing negatively charged organics and colloids. The BW30FR1 exhibits a relatively neutral and hydrophilic surface, which could be beneficial for lessening organic and/or biofouling. The SG membrane has a smooth surface that makes it quite resistant to fouling, particularly for colloidal deposition. Lastly, BE-FR membrane demonstrated a medium surface charge and a slightly higher hydrophobicity. In the pilot study, all of the four membranes experienced a gradual increase in MTC (water mass transfer coefficient or specific flux) over time, indicating no fouling occurred during the pilot study. The deterioration of permeate water quality such as TDS was also observed over time, suggesting that the integrity of the membranes was compromised by the monochloramine used for biofouling control.

Effects of Au Nanoparticle Monolayer on or Under Graphene for Surface Enhanced Raman Scattering

  • Kim, B.Y.;Jung, J.H.;Sohn, I.Y.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.636-636
    • /
    • 2013
  • Since first discovery of strong Raman spectrum of molecules adsorbed on rough noble metal, surface enhanced Raman scattering (SERS) has been widely used for detection of molecules with low concentration. Surface plasmons at noble metal can enhance Raman spectrum and using Au nanostructures as substrates of SERS has advantages due to it has chemical stability and biocompatibility. However, the photoluminescence (PL) background from Au remains a problem because of obtaining molecular vibration information. Recently, graphene, two-dimensional atomic layer of carbon atoms, is also well known as PL quenchers for electronic and vibrational excitation. In this study, we observed SERS of single layer graphene on or under monolayer of Au nanoparticles (NPs). Single layer graphene is grown by chemical vapor deposition and transferred onto or under the monolayer of Au NPs by using PMMA transfer method. Monolayer of Au NPs prepared using Langmuir-Blodgett method on or under graphene surface provides closed and well-packed monolayer of Au NPs. Scanning electron microscopy (SEM) and Raman spectroscopy (WItec, 532 nm) were performed in order to confirm effects of Au NPs on enhanced Raman spectrum. Highly enhanced Raman signal of graphene by Au NPs were observed due to many hot-spots at gap of closed well-packed Au NPs. The results showed that single layer graphene provides larger SERS effects compared to multilayer graphene and the enhancement of the G band was larger than that of 2D band. Moreover, we confirm the appearance of D band in this study that is not clear in normal Raman spectrum. In our study, D band appearance is ascribed to the SERS effect resulted from defects induced graphene on Au NPs. Monolayer film of Au NPs under the graphene provided more highly enhanced graphene Raman signal compared to that on the graphene. The Au NPs-graphene SERS substrate can be possibly applied to biochemical sensing applications requiring highly sensitive and selective assays.

  • PDF

The Preparation of Phosphor Screen for Video Phone Tube by Screen Printing Method (Screen Printing법에 의한 Video Phone Tube용 형광막 제조)

  • Lee Mi-Young;Lee Jong-Wook;Kim Young-Bae;Nam Su-Yong;Lee Sang-Nam;Moon Myung-Jun
    • Journal of Environmental Science International
    • /
    • v.14 no.8
    • /
    • pp.801-810
    • /
    • 2005
  • The phosphor and ITO(Indium Tin Oxide) films for video phone tube (VPT) were simply prepared by the screen printing and thermal transfer methods. The increasing order of thermal firing of acrylic binder for phosphor and ITO was M6003 < M6664 < A/A 1919 < M500l < M670 1 and all mass of binders were perfectly decomposed at lower temperature than $400^{\circ}C.$ After thermal firing of phosphor paste, the residual of binder on the surface of phosphor could not be found by SEM. Aerosil as thickner provides the thixotropy property for phosphor paste but decrease the brightness of phosphor screen as residual after thermal firing. Since the thixotropy of M5001 binder without aerosil was shown and the storage modulus of phosphor paste by increasing the angular frequency was not nearly changed and the decrease of the storage modulus of phosphor paste by increasing the strain was remarkably shown. It was possible to prepare the phosphor paste which was predominant in the plate separation and the reproduction of pattern after the screen printing. Since the addition of dispersing agent to improve the printing process decreases the electrical conductivity and light transmission of ITa film, it could be found to be necessary the development of binder for phosphor paste that decreases the amount of dispersing agent possibly and does not use the aerosil as additive.

The Effect of a Sol-gel Formed TiO2 Blocking Layer on the Efficiency of Dye-sensitized Solar Cells

  • Cho, Tae-Yeon;Yoon, Soon-Gil;Sekhon, S.S.;Kang, Man-Gu;Han, Chi-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3629-3633
    • /
    • 2011
  • The effect of a dense $TiO_2$ blocking layer prepared using the sol-gel method on the performance of dye-sensitized solar cells was studied. The blocking layer formed directly on the working electrode, separated it from the electrolyte, and prevented the back transfer of electrons from the electrode to the electrolyte. The dyesensitized solar cells were prepared with a working electrode of fluorine-doped tin oxide glass coated with a blocking layer of dense $TiO_2$, a dye-attached mesoporous $TiO_2$ film, and a nano-gel electrolyte, and a counter electrode of Pt-deposited FTO glass. The gel processing conditions and heat treatment temperature for blocking layer formation affected the morphology and performance of the cells, and their optimal values were determined. The introduction of the blocking layer increased the conversion efficiency of the cell by 7.37% for the cell without a blocking layer to 8.55% for the cell with a dense $TiO_2$ blocking layer, under standard illumination conditions. The short-circuit current density ($J_{sc}$) and open-circuit voltage ($V_{oc}$) also were increased by the addition of a dense $TiO_2$ blocking layer.

Research Activities of Transpiration Cooling for Liquid Rocket and Air-breathing Propulsions (액체로켓과 공기흡입식 추진기관을 위한 분출냉각의 연구동향)

  • Hwang, Ki-Young;Kim, You-Il;Song, In-Hyuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.235-240
    • /
    • 2010
  • Transpiration cooling is the most effective cooling technique for liquid rocket and air-breathing engines operating in aggressive environments with higher pressures and temperatures. Combustor liners and turbine vanes are cooled by the coolant(air or fuel) passing through their porous walls and also the exit coolant acting as an insulating film. However, its practical implementation has been hampered by the limitations of available porous materials. The search for more practical methods of increasing the internal heat transfer within the walls has led to the development of multi-laminate porous structures, such as Lamilloy$^{(R)}$ and Transply$^{(R)}$. This paper reviews recent research activities of transpiration cooling for the propulsions of liquid rocket, gas turbine, and scramjet.

  • PDF

Thermal Conductivity Measurement of High-k Oxide Thin Films (High-k 산화물 박막의 열전도도 측정)

  • Kim, In-Goo;Oh, Eun-Ji;Kim, Yong-Soo;Kim, Sok-Won;Park, In-Sung;Lee, Won-Kyu
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.2
    • /
    • pp.141-147
    • /
    • 2010
  • In this study, high-k oxide films like $Al_2O_3$, $TiO_2$, $HfO_2$ were deposited on Si, $SiO_2$/Si, GaAs wafers, and then the thermal conductivity was measured by using thermo-reflectance method which utilizes the reflectance variation of the film surface produced by the periodic temperature variation. The result shows that high-k oxide films with 50 nm thickness have high thermal conductivity of 0.80~1.29 W/(mK). Therefore, effectively dissipate the heat generated in the electric circuit such as CMOS memory device, and the heat transfer changes according to the micro grain size.