• Title/Summary/Keyword: Transfer coefficient

Search Result 2,403, Processing Time 0.033 seconds

Analysis on Insulation of Wind Environment and Greenhouse Cover Materials Insulation for Advanced Greenhouse Energy Design in Saemangeum Reclaimed Land (새만금 간척지 첨단온실 에너지 설계를 위한 풍환경 및 온실 피복재의 영향 분석)

  • Hyo-Jae Seo;Il-Hwan Seo;Deuk-ha Noh;Haksung Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.57-63
    • /
    • 2023
  • The external weather conditions including temperature and wind speed in the Saemangeum reclaimed land is different from that of the inland, affecting the internal environment of the greenhouse. Therefore, it is important to select an appropriate covering material considering the insulation effect according to the type and characteristics of the covering material considering the weather condition in the Saemangeum reclaimed land. A hexahedral insulation chamber was designed to evaluate the insulation efficiency of each glass-clad material in the outside weather condition in reclaimed land. In order to evaluate the insulation effect of each covering material, a radiator was installed and real-time power consumption was monitored. 16-mm PC (polycarbonate), 16-mm PMMA (polymethyl methacrylate), 4-mm greenhouse glass, and 16-mm double-layered glass were used as the covering materials of the chamber. In order to understand the effect of the external wind directions, the windward and downwind insulation properties were evaluated. As a result of comparing the thermal insulation effect of each greenhouse cover material to single-layer glass, the thermal insulation effect of double-layer glass was 16.9% higher, while PMMA and PC were 62.5% and 131.2% higher respectively. On average the wind speed on the windward side was 53.1% higher than that on the lee-wind side, and the temperature difference between the inside and outside of the chamber at the wind ward side was found to be 52.0% larger than that on the lee ward side. During the experiment period, the overall heating operation time for PC was 39.2% lower compared to other insulation materials. Showing highest energy efficiency, and compared to PC, single-layer glass power consumption was 37.4% higher.

Impact of Photon-Counting Detector Computed Tomography on Image Quality and Radiation Dose in Patients With Multiple Myeloma

  • Alexander Rau;Jakob Neubauer;Laetitia Taleb;Thomas Stein;Till Schuermann;Stephan Rau;Sebastian Faby;Sina Wenger;Monika Engelhardt;Fabian Bamberg;Jakob Weiss
    • Korean Journal of Radiology
    • /
    • v.24 no.10
    • /
    • pp.1006-1016
    • /
    • 2023
  • Objective: Computed tomography (CT) is an established method for the diagnosis, staging, and treatment of multiple myeloma. Here, we investigated the potential of photon-counting detector computed tomography (PCD-CT) in terms of image quality, diagnostic confidence, and radiation dose compared with energy-integrating detector CT (EID-CT). Materials and Methods: In this prospective study, patients with known multiple myeloma underwent clinically indicated whole-body PCD-CT. The image quality of PCD-CT was assessed qualitatively by three independent radiologists for overall image quality, edge sharpness, image noise, lesion conspicuity, and diagnostic confidence using a 5-point Likert scale (5 = excellent), and quantitatively for signal homogeneity using the coefficient of variation (CV) of Hounsfield Units (HU) values and modulation transfer function (MTF) via the full width at half maximum (FWHM) in the frequency space. The results were compared with those of the current clinical standard EID-CT protocols as controls. Additionally, the radiation dose (CTDIvol) was determined. Results: We enrolled 35 patients with multiple myeloma (mean age 69.8 ± 9.1 years; 18 [51%] males). Qualitative image analysis revealed superior scores (median [interquartile range]) for PCD-CT regarding overall image quality (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), edge sharpness (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), image noise (4.0 [4.0-4.0] vs. 3.0 [3.0-4.0]), lesion conspicuity (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), and diagnostic confidence (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]) compared with EID-CT (P ≤ 0.004). In quantitative image analyses, PCD-CT compared with EID-CT revealed a substantially lower FWHM (2.89 vs. 25.68 cy/pixel) and a significantly more homogeneous signal (mean CV ± standard deviation [SD], 0.99 ± 0.65 vs. 1.66 ± 0.5; P < 0.001) at a significantly lower radiation dose (mean CTDIvol ± SD, 3.33 ± 0.82 vs. 7.19 ± 3.57 mGy; P < 0.001). Conclusion: Whole-body PCD-CT provides significantly higher subjective and objective image quality at significantly reduced radiation doses than the current clinical standard EID-CT protocols, along with readily available multi-spectral data, facilitating the potential for further advanced post-processing.

Freezing Time Prediction of Foods by Multiple Regression Analysis (다중회귀분석에 의한 식품의 동결시간 예측)

  • Jeong, Jin-Woong;Kim, Jong-Hoon;Park, Noh-Hyun;Lee, Seung-Hyun;Kim, Young-Dong
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.341-347
    • /
    • 1998
  • To develop simple and accurate analytical method for freezing time prediction of beef and tylose under various freezing conditions, freezing time (Y) was regressed against the reciprocal $(X_3)$ of difference of initial freezing point and freezing medium temperature, reciprocal $(X_4)$ of surface heat transfer coefficient, the initial temperature $(X_1)$ and thickness $(X_2)$ of samples which should cover most situations arising in frozen food industry. As results of the multiple regression analysis, equations were obtained as follows. $Y_{tylose}=3.45X_1+7642.84X_2+4642.67X_3+2946.89X_4-431.33\;(R^2=0.9568)$ and $Y_{beef}=0.68X_1+7568.98X_2+2430.78X_3+3293.26X_4-299.00\;(R^2=0.9897)$. These equations offered better results than Plank, Nagaoka and Pham's models, shown in satisfactory agreement with models of Cleland & Earle and Hung & Thompson when were compared to previous models, and the accuracy of its was very high as average absolute difference of about 10% in the difference between the fitted and experimental results. Also, thermal diffusivities of beef and tylose were measured as $4.43{\times}10^{-4}m^2/hr$ and $4.39{\times}10^{-4}m^2/hr$ at $6{\sim}7^{\circ}C$, $2.42{\times}10^{-3}m^2/hr$ and $3.32{\times}10^{-3}m^2/hr$ at $-10{\sim}-12^{\circ}C$. Initial freezing points of beef and tylose were $-1.2^{\circ}C\;and\;-0.6^{\circ}C$, respectively. Surface heat transfer coefficients were estimated $20.57\;W/m^2^{\circ}C$ with no-packing, $16.11\;W/m^2^{\circ}C$ with wrap packing and $13.07\;W/m^2^{\circ}C$ with Al-foil packing, and the cooling rate of immersion freezing method was about 10 times faster than that of air blast freezing method.

  • PDF

COMPARISON OF FLUX AND RESIDENT CONCENTRATION BREAKTHROUGH CURVES IN STRUCTURED SOIL COLUMNS (구조토양에서의 침출수와 잔존수농도의 파과곡선에 관한 비교연구)

  • Kim, Dong-Ju
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.2
    • /
    • pp.81-94
    • /
    • 1997
  • In many solute transport studies, either flux or resident concentration has been used. Choice of the concentration mode was dependent on the monitoring device in solute displacement experiments. It has been accepted that no priority exists in the selection of concentration mode in the study of solute transport. It would be questionable, however, to accept the equivalency in the solute transport parameters between flux and resident concentrations in structured soils exhibiting preferential movement of solute. In this study, we investigate how they differ in the monitored breakthrough curves (BTCs) and transport parameters for a given boundary and flow condition by performing solute displacement experiments on a number of undisturbed soil columns. Both flux and resident concentrations have been simultaneously obtained by monitoring the effluent and resistance of the horizontally-positioned TDR probes. Two different solute transport models namely, convection-dispersion equation (CDE) and convective lognormal transfer function (CLT) models, were fitted to the observed breakthrough data in order to quantify the difference between two concentration modes. The study reveals that soil columns having relatively high flux densities exhibited great differences in the degree of peak concentration and travel time of peak between flux and resident concentrations. The peak concentration in flux mode was several times higher than that in resident one. Accordingly, the estimated parameters of flux mode differed greatly from those of resident mode and the difference was more pronounced in CDE than CLT model. Especially in CDE model, the parameters of flux mode were much higher than those of resident mode. This was mainly due to the bypassing of solute through soil macropores and failure of the equilibrium CDE model to adequate description of solute transport in studied soils. In the domain of the relationship between the ratio of hydrodynamic dispersion to molecular diffusion and the peclet number, both concentrations fall on a zone of predominant mechanical dispersion. However, it appears that more molecular diffusion contributes to the solute spreading in the matrix region than the macropore region due to the nonliearity present in the pore water velocity and dispersion coefficient relationship.

  • PDF

Evaluation of Sensitivity and Retrieval Possibility of Land Surface Temperature in the Mid-infrared Wavelength through Radiative Transfer Simulation (복사전달모의를 통한 중적외 파장역의 민감도 분석 및 지표면온도 산출 가능성 평가)

  • Choi, Youn-Young;Suh, Myoung-Seok;Cha, DongHwan;Seo, DooChun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1423-1444
    • /
    • 2022
  • In this study, the sensitivity of the mid-infrared radiance to atmospheric and surface factors was analyzed using the radiative transfer model, MODerate resolution atmospheric TRANsmission (MODTRAN6)'s simulation data. The possibility of retrieving the land surface temperature (LST) using only the mid-infrared bands at night was evaluated. Based on the sensitivity results, the LST retrieval algorithm that reflects various factors for night was developed, and the level of the LST retrieval algorithm was evaluated using reference LST and observed LST. Sensitivity experiments were conducted on the atmospheric profiles, carbon dioxide, ozone, diurnal variation of LST, land surface emissivity (LSE), and satellite viewing zenith angle (VZA), which mainly affect satellite remote sensing. To evaluate the possibility of using split-window method, the mid-infrared wavelength was divided into two bands based on the transmissivity. Regardless of the band, the top of atmosphere (TOA) temperature is most affected by atmospheric profile, and is affected in order of LSE, diurnal variation of LST, and satellite VZA. In all experiments, band 1, which corresponds to the atmospheric window, has lower sensitivity, whereas band 2, which includes ozone and water vapor absorption, has higher sensitivity. The evaluation results for the LST retrieval algorithm using prescribed LST showed that the correlation coefficient (CC), the bias and the root mean squared error (RMSE) is 0.999, 0.023K and 0.437K, respectively. Also, the validation with 26 in-situ observation data in 2021 showed that the CC, bias and RMSE is 0.993, 1.875K and 2.079K, respectively. The results of this study suggest that the LST can be retrieved using different characteristics of the two bands of mid-infrared to the atmospheric and surface conditions at night. Therefore, it is necessary to retrieve the LST using satellite data equipped with sensors in the mid-infrared bands.

Epstein-Barr Virus Antibodies in Korean Mothers and Their Neonates (산모와 신생아의 Epstein Barr Virus 항체가에 관한 연구)

  • Shin, Young Kyoo;Eun, Baik Lin;Park, Sang Hee;Lim, Chae Seung;Kim, Young Sik
    • Pediatric Infection and Vaccine
    • /
    • v.5 no.1
    • /
    • pp.121-127
    • /
    • 1998
  • Purposes : This study was performed to evaluate the seropositivities and levels of term pregnant women and their neonates, and the transplacental transfer rate of maternal Epstein-Barr Virus-specific IgG(VCA IgG and EBNA IgG) from term pregnant women to their neonates. Subjects and Methods : During Jan. 1, 1997 to Mar. 31. 1997, we collected the 42 pairs of sera from pregnant women and umbilical cord of their neonates in Korea University Ansan Hospital. The serum levels of VCA IgG and EBNA IgG were measured by the ELISA method. Results : 1) The seropositivities of VCA IgG were 100% in mothers and neonates. There was no statistical difference of mean VCA IgG levels between mothers and neonates. There was significant correlation of VCA IgG levels between maternal sera and neonatal umbilical cord sera(correlation coefficient r=0.5214, P<0.001). 2) The seropositivities of EBNA IgG were 100% in mothers and neonates. There was no significant difference of the mean EBNA IgG levels between mothers and neonates. There was significant correlation of EBNA IgG levels between maternal sera and neonatal umbilical cord sera (correlation coefficient r=0.7244, P<0.001). 3) There was no correlation between VCA IgG and EBNA IgG levels of maternal sera. Conclusion : Seropositivities of EBV CA IgG and EBNA IgG of term-pregnant women and their neonates were 100% and no significant differences of antibody levels were found in two groups. It seems that EBV Antibody levels in Korean mothers and neonates were high enough to protect primary EBV infection during early infancy.

  • PDF

Assessment of Region Specific Angstrom-Prescott Coefficients on Uncertainties of Crop Yield Estimates using CERES-Rice Model (작물모형 입력자료용 일사량 추정을 위한 지역 특이적 AP 계수 평가)

  • Young Sang, Joh;Jaemin, Jung;Shinwoo, Hyun;Kwang Soo, Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.256-266
    • /
    • 2022
  • Empirical models including the Angstrom-Prescott (AP) model have been used to estimate solar radiation at sites, which would support a wide use of crop models. The objective of this study was to estimate two sets of solar radiation estimates using the AP coefficients derived for climate zone (APFrere) and specific site (APChoi), respectively. The daily solar radiation was estimated at 18 sites in Korea where long-term measurements of solar radiation were available. In the present study, daily solar radiation and sunshine duration were collected for the period from 2012 to 2021. Daily weather data including maximum and minimum temperatures and rainfall were also obtained to prepare input data to a process-based crop model, CERES-Rice model included in Decision Support System for Agrotechnology Transfer (DSSAT). It was found that the daily estimates of solar radiation using the climate zone specific coefficient, SFrere, had significantly less error than those using site-specific coefficients SChoi (p<0.05). The cumulative values of SFrere for the period from march to September also had less error at 55% of study sites than those of SChoi. Still, the use of SFrere and SChoi as inputs to the CERES-Rice model resulted in slight differences between the outcomes of crop growth simulations, which had no significant difference between these outputs. These results suggested that the AP coefficients for the temperate climate zone would be preferable for the estimation of solar radiation. This merits further evaluation studies to compare the AP model with other sophisticated approaches such as models based on satellite data.

Electrode Characteristics of K+ Ion-Selective PVC Membrane Electrodes with AC Impedance Spectrum (AC 임피던스 분석법을 이용한 K+ 이온선택성 PVC막 전극 특성)

  • Kim, Yong-Ryul;An, Hyung-Hwan;Kang, An-Soo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.870-877
    • /
    • 1998
  • With impedance spectrum measurements, impedance was studied in the interface between sample solutions for $K^+-ion$ selective PVC membrane electrode containing neutral carriers [dibenzo-18-crown-6 (D18Cr6) and valinomycine (Val)]. Response characteristics of electrode were examined by measuring AC impedance spectra that were resulted from the chemical structure and the content of carrier, variation of plasticizer, membrane thickness, doping of base electrolytes, and concentration variation of sample solution. Transport characteristics of PVC membrane electrode were also studied. It was found that the equivalent circuit for the membrane in $K^+$ solution could be expressed by a series combination of solution resistance and a parallel circuit consisting of the bulk resistance and geometric capacitance of the membrane system. But the charge transfer resistance and Warburg resistance were overlapped a little in the low concentration and low frequency ranges. The carrier, D18Cr6 was best for electrode and impedance characteristics, and ideal electrode characteristics were appeared especially in case of doping of the base electrolyte[potassium tetraphenylborate(TPB)]. The optimum carrier content was about 3.23 wt% in case of D18Cr6 and Val. DBP was best as a plasticizer. As membrane thickness decreased the impedance characteristics was improved, but electrode characteristics were lowered for membrane thickness below the optimum. In the case of D18Cr6, the selectivity coefficients by the mixed solution method for the $K^+$ ion were the order of $NH_4{^+}>Ca^{2+}>Mg^{2+}>Na^+$.

  • PDF

Genetic Analyses of Heading and Maturing Dates and Their Relationship to Freezing Resistance in Barley (보리 출수기와 성숙기의 유전분석 및 내동성과의 관계)

  • 천종은;강석원
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.6
    • /
    • pp.395-401
    • /
    • 2002
  • The combination of early heading time, maturing time and short grain-filling period is very important to develop early varieties in winter barley. The 4 parental half diallel crosses (parents, $F_1$s, $F_2$s) were cultivated at the field. The heading date was from April 3 to 26, maturing date from May 15 to 27 and grain-filling period from 31 days to 42 days, showing that the varietal differences about the 3 traits were remarkable. According to half diallel cross analyses, Dongbori 1 for heading time (late heading) was dominant, but Oweolbori (early heading) was recessive, showing partial dominance with high additive component of genetic variance. Dongbori 1 for maturing time was dominant, but Oweolbori was recessive, showing partial dominance with high additive variance. Reno for grain-filling period (short grain-filling period) was dominant, but Oweolbori (long grain-filling period) was recessive with additive, and partial dominance. There were highly significant mean squares for both GCA and SCA effects on the heading and maturing times, and GCA/SCA ratios for all traits were high, showing the additive gene effects more important. Sacheon 6 and Oweolbori had greater GCA effects for early heading and maturing times, and Dongbori 1 and Reno had greater GCA effects for late times. GCA effects were highly significant in $F_1$ and $F_2$ generations, showing high GCA/SCA ratios (7.02). The heading and maturing times in field were positively correlated with antifreeze proteins concentrations, accumulation, resistance to photoinhibition and winter survival, respectively) but the grain-filling period did negatively correlated with the trails.

Effects of Salt Treatment on Yield and Physiological Characteristics of Flag Leaf at Heading Stage in Winter Barley (보리 출수기 염처리가 수량 및 지잎의 생리적 특성에 미치는 영향)

  • 최원열;김영민;박종환
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.6
    • /
    • pp.409-412
    • /
    • 2002
  • This research was conducted to obtain the fundamental data on salt injury and different responses among cultivars in winter barley (Hordeum vulgare L.). Salts did not affect yield components including number of panicles, stem length, grain number per ear and grain yield while reduced stem dry weight and thousand seed weight significantly with increasing concentrations of salt from 60 to 180 mM. NaCl had less injury effect on barley straw dry weight and thousand seed weight than did $MgSO_4$. Chlorophyll content and relative turgidity in flag leaf were reduced when treated with both salts, while free proline in the salt-treated leaf was increased. Content of proline in salt-treated barley was about 10 folds compared to the control. Based on yield components and physiological traits of flag leaf, the tolerance to salt injury was the greatest in Baegdong, followed by Dongbori#1, Mogpo#55, and Gangbori. The results suggested that salt- stressed barley at reproductive stage had higher free proline content, and that special management in this stage must be considered because salt stress at heading stage affect flag leaf growth as well as yield components Harmfully.