Multilingual machine translation means the machine translation that is for more than two languages. Common transfer means the transfer in which we can reuse the transfer rules among similar languages according to linguistic typology. Therefore, the multilingual machine translation based on common transfer is the multilingual machine translation that can share the transfer rules among languages with similar linguistic typology. This paper describes the linguistic modeling for multilingual machine translation based on common transfer under development. This linguistic modeling consists of the linguistic devices such as 1) multilingual common Part-of-Speech set, 2) multilingual common transfer format, 3) multilingual common transfer chunking, and 4) multilingual common transfer rules based on linguistic typology. Validity of this linguistic modeling for multilingual machine translation is shown in the simulation. The multilingual machine translation system based on common transfer including Korean, English, Chinese, Spanish, and French will be developed till 2018.
One bottleneck of Bengali to Hindi transfer based machine translation system is the translation of suffixes of noun. The appropriate translation of a nominal suffix often depends on the semantic role of the corresponding noun chunk in the sentence. With the availability of a high performance Bengali morphological analyzer and a basic Bengali parser it is possible to identify the role of each noun chunk. This information may be used for building rules for translating the ambiguous nominal suffixes. As there are some similarities between the uses of Bengali and Hindi nominal suffixes we find that the rules may be identified by linguistically analyzing corpus data. In this paper, we identify rules for the ambiguous four Bengali nominal suffixes from corpus data and evaluate their performances. This set of rules is able to resolve a majority of the nominal suffix ambiguities in Bengali to Hindi transfer based machine translation system. Using the rules, we are able to translate 98.17% Bengali nouns correctly which is much better than the baseline ILMT system's accuracy of 62.8%.
한국어와 일본어는 동일한 어족에 속하며 비슷한 문장구조를 가지고 있어 변환중심 기계번역 방법이 효율적이다. 본 논문에서는 토큰 단위의 변환중심 한일 기계번역 시스템을 위한 변환 사전을 생성하는 방법에 관하여 기술하였다. 변환 사전이 잘 구성되면 구문분석 단계에서는 대역어를 선정하기에 적합한 정도까지의 의존트리를 생성하는 간이 파싱 만을 함으로써 필요 없는 노력을 경감시킬 수 있다. 게다가 구문해석 시에 최종의 결과 트리를 만들지 않아도 되므로 문어체 문장은 물론 입력 형태가 비정형적인 대화체 문장에서 더욱 큰 효과를 볼 수 있다. 본 논문의 변환 사전은 한국전자통신 연구원이 수집한 음성 데이터베이스로부터 추출한 말뭉치를 사용해 구성하였다. 구현한 시스템은 여행 계획영역에서 수집된 900여 발화 안의 문장을 대상으로 시험하였는데 제한된 환경에서 $92\%$, 아무런 제약이 없는 환경에서는 $81\%$의 성공률을 보였다.
The interests in Machine Translation(MT) have gotten revitalized lately with the rapid expansion of internet users. MT technology has gone through several different stages of development, but the longest surviving methods usually maintains the following characteristics: the expand ability and flexibility based on proved linguistic formalism, the transfer method of translation, the continued efforts of systematic updates being made into the system. This paper introduces one such system, L&H Korean-English bidirectional MT system. This system uses Lexical-Functional Grammar as its linguistic framework. It also adopts the transfer method of MT and has been around on the market for over 10 years for other language pairs. Currently, the system covers over 10 different languages including Chinese, Japanese and Arabic, in addition to European languages. This paper will review the system in its core and discuss related tools and resources be ing used to enhance the quality of translation.
한국언어정보학회 2002년도 Language, Information, and Computation Proceedings of The 16th Pacific Asia Conference
/
pp.147-156
/
2002
Aligned parallel corpora have proved very useful in many natural language processing tasks, including statistical machine translation and word sense disambiguation. In this paper, we describe an alignment technique for extracting transfer mapping from the parallel corpus. During building our system and data collection, we observe that there are three types of translation approaches can be used. We especially focuses on Traditional Chinese and Simplified Chinese text lexical translation and a method for extracting transfer mappings for machine translation.
기계번역 사후교정 (Automatic Post Editing, APE)이란 번역 시스템을 통해 생성한 번역문을 교정하는 연구 분야로, 영어-독일어와 같이 학습데이터가 풍부한 언어쌍을 중심으로 연구가 진행되고 있다. 최근 APE 연구는 전이학습 기반 연구가 주로 이루어지는데, 일반적으로 self supervised learning을 통해 생성된 사전학습 언어모델 혹은 번역모델이 주로 활용된다. 기존 연구에서는 번역모델에 전이학습 시킨 APE모델이 뛰어난 성과를 보였으나, 대용량 언어쌍에 대해서만 이루어진 해당 연구를 저 자원 언어쌍에 곧바로 적용하기는 어렵다. 이에 본 연구에서는 언어 혹은 번역모델의 두 가지 전이학습 전략을 대표적인 저 자원 언어쌍인 한국어-영어 APE 연구에 적용하여 심층적인 모델 검증을 진행하였다. 실험결과 저 자원 언어쌍에서도 APE 학습 이전에 번역을 한차례 학습시키는 것이 유의미하게 APE 성능을 향상시킨다는 것을 확인할 수 있었다.
본 논문에서는 음성언어 자동 통역시스템의 일부 모듈로 구현한 한일 기계번역 시스템을 소개하였다. 이 번역시스템은 예제중심 기계번역(EBMT)에 기초를 둔 변환중심 기계번역(TDMT) 방법을 기반으로 구현하였다. 본 시스템에서는 토큰(TOKEN)이라는 새로운 번역단위를 정의하여 사용하였다. 토큰단위의 번역방법을 사용함으로써 한국어 문장의 매우 비 정형적인 점을 해결하고 번역의 질을 높일 수 있다. 본 시스템의 구문분석 단계에서는 대역어를 선정하기에 적합한 정도까지의 의존트리를 생성하는 간이파싱만을 함으로써 필요없는 노력을 경감시켰다. 대역어 사전은 한국전자통신 연구원이 수집한 음성 데이터베이스로부터 추출한 말뭉치를 사용해 구성하였다. 구현한 시스템은 여행 계획영역에서 수집된 600 발화 안의 문장을 대상으로 시험하였는데 제한된 환경에서 87%, 아무런 제약이 없는 환경에서는 71%의 성공률을 보였다.
예제 기반 기계번역 기법은 기존의 규칙 기반 기계번역에서 발생되는 다양한 문제점들을 해결하기 위해 제안된 새로운 기계번역 패러다임이다. 하지만 기존의 순수 예제 기반 기계번역의 경우 적당한 크기의 병렬 코퍼스를 사용하여 입력문과 거의 유사한 예문을 발견하는데는 한계가 있으며, 이러한 점이 번역문 생성 단계에서 부담으로 작용하게 된다. 본 논문에서는 예제 기반 기계번역 기법의 문제점을 보완하기 위한 새로운 대안으로서 패턴과 예문을 함께 사용하여 영한 변환을 수행하는 새로운 영한 변환 기법을 제안한다. 패턴은 크게 문장 패턴과 구 패턴으로 구분되며, 패턴의 메타 부분은 유사 예문 발견 확률을 높여서 예제 기반 기계 번역 기법을 보다 실용적으로 만들어준다. 실험 결과 기존의 표층 어휘 비교에 의한 순수 예제 기반 기계번역에 비해 비교적 적은 양의 예문을 가지고도 유사 예문 발견 확률이 높다는 것을 알 수 있었다.
본 논문은 RBMT, SMT, PBMT를 활용한 직렬 연결 방식의 하이브리드 번역 시스템을 제안한다. 번역 시스템은 입력된 문장에 대하여 구문 분석을 진행한 후, 이 정보를 바탕으로 구문 변환과 개체명 인식을 한다. 이 결과값을 의사 문장으로 변형, 문장 분리 규칙이 적용 가능할 경우, 분리된 문장에 대하여 다중 디코딩을 수행하고, 후처리기에서 접합 규칙에 따라 번역문을 생성하였다. 실험을 통하여 어순 배치의 경우 distortion 모델에 의존하지 않고 구문 변환(rule-based syntactic transfer)규칙을 사용하는 것이 더욱 효과적인 것으로 나타났다.
한국어와 일본어는 문법 체계의 유사성으로 인하여, 양언어의 형태소들 간에 1대1 매핑만으로도 높은 번역 성능을 얻을 수 있다. 따라서, 대부분의 한-일 기계번역에서는 한국어와 일본어 형태소 사이에 1대1 매핑을 기본으로 하고 있다. 명사와 '하다'로 구성되는 한국어 '하다' 용언도 대부분 명사와 'する'로 구성되는 일본어 'する 용언에 대응되므로, 일반적으로 1대1 매핑을 관계를 적용한다. 그러나, 한국어 '하다' 용언이 일본어 'する'용언에 대응되지 않는 경우, 1대1 매핑만으로는 정확한 번역 결과를 얻지 못하는 경우도 자주 발생하게 된다. 이 경우 명사와 '하다'를 하나의 번역 단위로 다루어 주는 것이 필요하다. 따라서, 본 논문에서는 한국어 '하다' 용언의 특성을 조사하고. 명사와 '하다' 사이에 삽입된 어휘들에 의한 비연속성 문제, 피동화, 관형어 수식 등 입력 문장에서의 다양한 상황에 따른 '하다'용언의 변환 기법을 제안하였다. 실험 결과, 높은 번역 성능을 보임으로써 제안한 방법이 한일 기계번역에서 '하다'용언을 다루는데 효율적임을 볼 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.