• Title/Summary/Keyword: Transfer Torque

Search Result 214, Processing Time 0.027 seconds

Improving Vehicle Driving Stability by Controlling CVT and Brake Force (CVT 및 BrakeForce 제어를 통한 차량 주행 안정성 향상)

  • 조현욱;이승종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.305-308
    • /
    • 2002
  • The mechanics, electronics and manufacturing technology have been developed rapidly. Nowadays vehicle stability becomes more and more important then ABS (Anti-lo7k Brake System), ASR (Anti-Slip Regulator), TCS, (Traction Control System), ESP (Electronic Stability Program), and VDC (Vehicle Dynamic Control) which actively control the vehicle stability actively has been improved. In this study, instead of automatic transmission, CVT (Continuously Variable Transmission) is used because of the continuously gear ratio changes. It can effectively transfer the torque from engine to tire more than other gear transmission. The modeling is simplified assuming that there are no resistance parameters.

  • PDF

Parallel Running of Induction Motor by Anti-slip Controller of Inertia Conversion (관성변화시의 Anti-slip 제어기에 의한 유도전동기 병렬운전)

  • Jeon, Kee-Young;Kim, Jung-Gyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.877-878
    • /
    • 2006
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, inertia conversion the electric motor coach has slip phenomena. This paper proposes a anti-slip control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using load torque disturbance observer. Based on this estimated adhesive effort, the anti-slip control is performed to obtain the maximum transfer of the tractive effort.

  • PDF

A Study on Slip Frequency Control And Frequency Compensation in CSIM (전류형 인버터로 구동되는 유도 전동기의 슬립 주파수 제어와 주파수 보상에 관한 연구)

  • Jeon, Hi-Jong;Kim, Chun-Soo;Lee, Myong-Woo;Jeong, Won-Seok;An, Jae-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.306-309
    • /
    • 1988
  • For the purpose of fast response and simplifing system angle control strategy is selected. And the analysis and dynamic performance of a slip frequency controlled current source inverter fed induction motor drive with stator frequency compensation (indirect torque angle control) is investigated. The current control loop including motor is modeled and speed control loop including the frequency compensation is analysed. And transfer function of overal system is simplified. Experimental results are given in support of the analytical procedure.

  • PDF

A Study of Adhesive Effect Estimation using Anti-slip Control Algorithm (Anti-slip 제어 알고리즘을 이용한 접착력 추정에 관한 연구)

  • Kim Gil-Dong;Ahn Tae-Ki;Lee Woo-Dong;Lee Ho-Yong;Park Seo-Young
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.626-631
    • /
    • 2004
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using load torque disturbance observer. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

  • PDF

Studies of Effects of Current on Exchange-Bias: A Brief Review

  • Bass, J.;Sharma, A.;Wei, Z.;Tsoi, M.
    • Journal of Magnetics
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • MacDonald and co-workers recently predicted that high current densities could affect the magnetic order of antiferromagnetic (AFM) multilayers, in ways similar to those that occur in ferromagnetic (F) multilayers, and that changes in AFM magnetic order can produce an antiferromagnetic Giant Magnetoresistance (AGMR). Four groups have now studied current-driven effects on exchange bias at F/AFM interfaces. In this paper, we first briefly review the main predictions by MacDonald and co-workers, and then the results of experiments on exchange bias that these predictions stimulated.

Experimental of the Rotaing Cryogenic System (회전하는 극저온 시스템의 단열 특성에 관한 실험적 연구)

  • 이창규;정상권
    • Progress in Superconductivity and Cryogenics
    • /
    • v.2 no.1
    • /
    • pp.7-13
    • /
    • 2000
  • A rotating cryogenic system was designed similar to the cooling system for the rotor of a superconducting generator. The experimental rotor has an inner vessel which simulates the winding space of an actual superconducting rotor, and a torque tube of comparable design. This paper describes the evaluation of the total heat leak into the inner vessel that leads to the study of the heat transfer characteristic of the rotating cryogenic system. To examine the insulation performance of the experimental rotor. temperature was measured at each part of the system at various rotaing speeds from 0 rpm to 600 rpm. Total heat leak into the inner vessel was calculated by measuring the boil-off rate of liquid helium. Conduction heat leak to the inner vessel was obtained by the vent tube, and radiation heat leak was calculated by subtracting the conduction heat lent from the total heat leak. There seemed to be no rotaional dependency of total heat leak at least up 600 rpm.

  • PDF

Modeling or an Engine System for Idle Speed Control (공회전 속도제어를 위한 엔진 시스템 모델)

  • Jo, Jang-Won;Lee, Youn-Seop;Lee, Deog-Kyoo;Choi, Don;Woo, Kwang-Bang
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.430-433
    • /
    • 1989
  • This paper describes dynamic engine model that is appricable to idle speed control system development. A basic linear engine model responds to throttle and load torque Inputs to provide manifold pressure and speed outputs. Transfer functions are then derived for the modified linear engine model and significant dynamic characteristics are discussed. Lastly, the strategy for controlling idle speed uses the linear optimal control theory. The linear optimal regulator was designed using a state variable and the performance Index was minimized.

  • PDF

Experimental Modeling of Acceleration and Brake Systems for Autonomous Vehicle (자율주행자동차 가속/제동시스템의 실험적 모델링)

  • Lee, Jong-Eon;Kim, Young Chol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.642-651
    • /
    • 2016
  • For the acceleration and brake systems of an autonomous vehicle, the dynamic models from acceleration (brake) pedal input to driving(braking) torque at the vehicle wheel are represented by a set of linear transfer functions in this paper. We present an experimental method that can identify these models using a single rectangular pulse response data. Various magnitude of inputs with different running speeds are applied to experimental tests. All the identified models are demonstrated by the measured data. Both acceleration and brake models have been also validated by comparing the velocity of a full vehicle model associated with the proposed models with the measured vehicle velocity.

A Locality-Aware Write Filter Cache for Energy Reduction of STTRAM-Based L1 Data Cache

  • Kong, Joonho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.1
    • /
    • pp.80-90
    • /
    • 2016
  • Thanks to superior leakage energy efficiency compared to SRAM cells, STTRAM cells are considered as a promising alternative for a memory element in on-chip caches. However, the main disadvantage of STTRAM cells is high write energy and latency. In this paper, we propose a low-cost write filter (WF) cache which resides between the load/store queue and STTRAM-based L1 data cache. To maximize efficiency of the WF cache, the line allocation and access policies are optimized for reducing energy consumption of STTRAM-based L1 data cache. By efficiently filtering the write operations in the STTRAM-based L1 data cache, our proposed WF cache reduces energy consumption of the STTRAM-based L1 data cache by up to 43.0% compared to the case without the WF cache. In addition, thanks to the fast hit latency of the WF cache, it slightly improves performance by 0.2%.

Novel Self-Reference Sense Amplifier for Spin-Transfer-Torque Magneto-Resistive Random Access Memory

  • Choi, Jun-Tae;Kil, Gyu-Hyun;Kim, Kyu-Beom;Song, Yun-Heub
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.1
    • /
    • pp.31-38
    • /
    • 2016
  • A novel self-reference sense amplifier with parallel reading during writing operation is proposed. Read access time is improved compared to conventional self-reference scheme with fast operation speed by reducing operation steps to 1 for read operation cycle using parallel reading scheme, while large sense margin competitive to conventional destructive scheme is obtained by using self-reference scheme. The simulation was performed using standard $0.18{\mu}m$ CMOS process. The proposed self-reference sense amplifier improved not only the operation speed of less than 20 ns which is comparable to non-destructive sense amplifier, but also sense margin over 150 mV which is larger than conventional sensing schemes. The proposed scheme is expected to be very helpful for engineers for developing MRAM technology.