• Title/Summary/Keyword: Transfer Ratio

Search Result 2,120, Processing Time 0.028 seconds

Film Cooling from Two Rows of Holes with Opposite Orientation Angles: Blowing Ratio Effects (반대방향의 방향각을 갖는 2열 분사구조의 막냉각 특성 : 분사비의 영향)

  • Ahn, J.;Jung, I.S.;Lee, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.113-118
    • /
    • 2000
  • Experimental results describing the effects of blowing ratio on film cooling from two rows of holes with opposite orientation angles are presented. The inclination angle was fixed at $35^{\circ}$ and the orientation angles were set to be $45^{\circ}$ for downstream row. and $-45^{\circ}$ for upsream row. The studied blowing ratios were 0.5, 1.0 and 2.0. The boundary layer temperature distributions were measured using thermocouple at two downstream loundary layer temperature distributions were measured using thermocouple at two downstream locations. Detailed adiabatic film cooling effectiveness and heat transfer coefficient distributions were measured with TLC(Thermochromic Liquid Crystal). The adiabatic film cooling effectiveness and heat transfer coefficient distributions are discussed in connection with the injectant behaviors inferred from the boundary layer temperature distributions. Film cooling performance, represented by heat flux was calculated with the adiabatic film cooling effectiveness and heat transfer coefficient data.

  • PDF

Optimization of a Cooling Channel with Staggered Elliptical Dimples Using Neural Network Techniques (신경회로망기법을 사용한 타원형 딤플유로의 냉각성능 최적화)

  • Kim, Hyun-Min;Moon, Mi-Ae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.42-50
    • /
    • 2010
  • The present analysis deals with a numerical procedure for optimizing the shape of elliptical dimples in a cooling channel. The three-dimensional Reynolds-averaged Navier-Stokes (RANS) analysis is employed in conjunction with the SST model for predictions of the turbulent flow and the heat transfer. Three non-dimensional geometric design variables, such as the ellipse dimple diameter ratio, ratio of the dimple depth to the average diameter, and ratio of the distance between dimples to the pitch are considered in the optimization. Twenty-one experimental points within design space are selected by Latin Hypercube Sampling. Each objective function values at these points are evaluated by RANS analysis and producing optimal point using surrogate model. The linear combination of heat transfer coefficient and friction loss related terms with a weighting factor is defined as the objective function. The results show that the optimized elliptical dimple shape improves considerably the heat transfer performance than the circular dimple shape.

A Study on the Improvement of the Water System in Domestic Boiler (가정용 보일러의 급탕시설 개선방안에 관한 연구)

  • Han, Gyu-Il;Park, Jong-Un
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.2
    • /
    • pp.200-211
    • /
    • 1998
  • Heat transfer performance improvement by fin and groovs is studied for condensation of R-11 on integral-fin tubes. Eight tubes with trapczodially shaped integral-fins having fin density from 748 to 1654fpm(fin per meter) and 10, 30 grooves are tested. A plain tube having the same diameter as the finned tubes is also used for comparison. R-11 condensates at saturation state of 32 $^{\circ}C$ on the outside tube surface coded by inside water flow. All of test data are taken at steady state. The heat transfer loop is used for testing singe long tubes and cooling is pumped from a storage tank through filters and folwmeters to the horizontal test section where it is heated by steam condensing on the outside of the tubes. The pressure drop across the test section is measured by menas pressure gauge and manometer. The results obtained in this study is as follows : 1. Based on inside diameter and nominal inside area, overall heat transfer coefficients of finned tube are enhanced up to 1.6 ~ 3.7 times that of a plain tube at a constant Reynolds number. 2. Friction factors are up to 1.6 ~ 2.1 times those of plain tubes. 3. The constant pumping power ratio for the low integral-fin tubes increase directly with the effective area to the nominal area ratio, and with the effective area diameter ratio. 4. A tube having a fin density of 1299fpm and 30 grooves has the best heat transfer performance.

  • PDF

Effects of Changes in Equivalence Ratio and Modulation Condition on Flame Transfer Function (당량비 및 섭동 조건 변화가 화염 전달 함수에 미치는 영향)

  • Kim, Dae-Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.35-40
    • /
    • 2011
  • An experimental study of the flame response in a turbulent premixed combustor has been conducted in order to investigate mechanisms for combustion instabilities in a lean premixed gas turbine combustor. A lab-scale combustor and mixing section system were fabricated to measure the flame transfer function. Measurements are made of the velocity fluctuation in the nozzle using hot wire anemometry and of the heat release fluctuation in the combustor using chemiluminescence emission. The results show that the flame transfer functions are greatly dependent on the modulation frequency as well as operating conditions such as equivalence ratio. Flame dynamics can be generalized as a function of Strouhal number which is a ratio of flame length to modulation wave length.

Study on forced convective heat transfer in helically ceiled tubes (나선코일튜브내의 강제대류 열전달에 관한 연구)

  • 한규일;박종운;임태우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.3
    • /
    • pp.282-291
    • /
    • 1998
  • Heat transfer performance are studied for the turbulent flow of water in 3 smooth tube coils having ratios of coil to tube diameter of 16, 21 and 27, and a corrugated-coiled tube having a ratio of coil to tube diameter of 29, for Reynolds numbers from 8000 to 60000 and is also compared with the limited results available to data. The experiments are carried out for the fully developed turbulent flow of water in tube coils under the condition of uniform heat flux. This work is limited 0 tube coils of R/a between 10 and 30. The tube having a ratio of coil to tube diameter of 27 among the 3 smooth tube coils shows the best heat transfer performance. The performance of coiled tube best transfer performance. The performance of coiled tube with a similar curvature ratio is better for a corrugated-coiled tube(R/a=17) than for a smooth coiled tube(R/a=16). An empirical relation which correlates most of the data within $\pm$25% was also developed. Test result shows that the Nusselt number is found to be affected by a secondary flow due to curvature.

  • PDF

Effect of Number of Heating Walls on Heat Transfer in Ribbed Rectangular Channel (거친 사각채널에서 가열 벽면의 수가 열전달에 미치는 효과)

  • Bae Sung Taek;Ahn Soo Whan;Kim Myoung Ho;Lee Dae Hee;Kang Ho Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.514-520
    • /
    • 2005
  • Surface heat transfer of a fully developed turbulent air flow in a $45^{\circ}$ inclined ribbed square duct with two and four heating walls was experimentally investigated, at which the experimental works were peformed for Reynolds numbers ranging from 7,600 to 26,000. The pitch-to-rib height ratio, p/e, was kept at 8 and rib-height-to-channel hydraulic diameter ratio, $e/D_h$ was kept at 0.0667. The channel length-to-hydraulic diameter ratio, $L/D_h$ was 60. The heat transfer coefficient values were decreased with the increase in the number of heat-ing walls. Results of this investigation could be used in various applications of internal channel turbulent flow involving roughened walls.

Quantitative evaluation of transfer learning for image recognition AI of robot vision (로봇 비전의 영상 인식 AI를 위한 전이학습 정량 평가)

  • Jae-Hak Jeong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.909-914
    • /
    • 2024
  • This study suggests a quantitative evaluation of transfer learning, which is widely used in various AI fields, including image recognition for robot vision. Quantitative and qualitative analyses of results applying transfer learning are presented, but transfer learning itself is not discussed. Therefore, this study proposes a quantitative evaluation of transfer learning itself based on MNIST, a handwritten digit database. For the reference network, the change in recognition accuracy according to the depth of the transfer learning frozen layer and the ratio of transfer learning data and pre-training data is tracked. It is observed that when freezing up to the first layer and the ratio of transfer learning data is more than 3%, the recognition accuracy of more than 90% can be stably maintained. The transfer learning quantitative evaluation method of this study can be used to implement transfer learning optimized according to the network structure and type of data in the future, and will expand the scope of the use of robot vision and image analysis AI in various environments.

Optimization of Angled Ribs for Heat Transfer Enhancement in Square Channel with Bleed Flow (유출홀이 설치된 정사각유로 내 열전달 향상을 위한 경사진 요철 최적설계)

  • Lee, Hyun;Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2384-2389
    • /
    • 2007
  • The 2nd order response surface method (RSM) has been carried out to get optimum thermal design for enhanced heat transfer on square channel with bleed holes. The RSM was used as an optimization technique with Reynolds-averaged navier-stokes equation. Turbulence model for heat transfer analysis used RNG k-epsilon model. The wall function used enhanced wall function. Numerical local heat transfer coefficients were similar to the experimental tendency. Two design variables such as attack angle of rib (${\alpha}$), rib pitch-to-rib height ratio (p/e) were chosen. Operation condition considered bleeding ratio per bleed hole ($BR_{hole}$). A response surface were constructed by the design variables and operation condition. As a result, adjusted $R^2$ was more than 0.9. Optimization results of various objective function were similar to heat transfer in channel with and without bleed flow. But friction factor was lower than channel without bleed flow.

  • PDF

A Study on the Embodiment of a Transfer Case with High-Speed Reduction of the Planetary Gear Type Applied to Big Industrial Vehicles (대형 산업 차량에 적용되는 유성기어형 고감속 중간변속기 구현에 관한 연구)

  • Lee, Won-Kyu;Park, Se-Myoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.14-20
    • /
    • 2015
  • A high-speed reduction transfer case is usually employed by an excavator, wheel loader, or bulldozer. When powerful torque is required in the case of climbing steep roads or towing heavy equipment, the high-speed reduction mode of the gearbox is used. Generally, a transfer case using a spur gear type with a speed reduction system has a speed reduction ratio of 1 to 1 or 2 to 1. However, the structure of a transfer case achieved at a high speed of 1 to 1 and a low speed of 4.5 or under 5.5 to 1 with the speed reduction by use of a planetary gear type with a speed reduction system was proposed in this study. By employing a planetary gear type with a speed reduction system, the compact structure of the transfer case was achieved, and the impact or the partial defect of gear teeth was eliminated.

A Study on Emission Characteristics of Odor Compounds from Waste Transfer Station (적환장에서 발생하는 악취 분포 특성에 관한 연구)

  • Jeon, Jae-Sik;Kim, Eun-Sook;Yoo, Seung-Sung;Oh, Seok-Ryul;Choi, Han-Young
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.5
    • /
    • pp.418-425
    • /
    • 2013
  • Objective: This study was carried out for the purpose of identifying major substances contributing to the production of odor and evaluating the characteristic of odors. Methods: Complex odor and 17 odorous compounds were measured at 18 waste transfer stations located in Seoul. Results: The dilution ratio value of complex odor ranged from 4 to 30 times in the boundary layer of 18 waste transfer stations. At 6 measurement points among the 18 waste transfer stations, the dilution ratio values exceeded standards (15 times). When the results were evaluated in terms of their contribution to the formation of malodor, the patterns indicated that the highest concentration values in the residential waste disposal process were of i-valeraldehyde and acetaldehyde, while butyraldehyde and acetaldehyde accounted for a large proportion of odorous compounds from the waste recycling process. Conclusions: It was found that butyraldehyde and acetaldehyde were the primary compounds released from the food waste disposal process. Overall, aldehyde compounds were the greatest contributor to detectable odor intensity emitted at the waste transfer stations.