• Title/Summary/Keyword: Transfection analysis

Search Result 147, Processing Time 0.026 seconds

Development of Bovine Nuclear Transfer Embryos Using Life-span Extended Donor Cells Transfected with Foreign Gene

  • Hwang, Seongsoo;Choi, Eun Joo;You, Seungkwon;Choi, Yun-Jaie;Min, Kwan-Sik;Yoon, Jong-Taek
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.11
    • /
    • pp.1574-1579
    • /
    • 2006
  • This study was performed to determine the developmental potentials of nuclear transfer (NT) embryos using life-span extended cells transfected with a foreign gene as donor cells. A life-span extended bovine embryonic fibroblast cell line was transfected with an expression vector in which the human type II collagen (BOMAR) and ear fibroblasts were used as a donor cell. Cytogenetic analysis was performed to analyze the chromosomal abnormality of donor cells. The fusion rate of 1.8 kV/cm for $15{\mu}sec$ given twice was significantly higher than that of other groups (p<0.05) and the embryos lysed were significantly higher after 1.8 kV/cm for $20{\mu}sec$ given once compared to other groups (p<0.01). The blastocyst development in the ear cell group was statistically significant compared to both BOMAR groups (p<0.01). Both BOMAR groups cultured more than 40 passages (>40 passages) had a lower number of chromosomes; however, fresh granulosa cell (GC) and BOMAR groups cultured less than 20 passages had normal chromosome numbers. Both >40 passages BOMAR groups had numerous obscure debris in metaphase spreads. The transfected foreign gene was expressed in all BOMAR groups, but not in the GC group. Based on these results, the lower developmental potential of NT embryos using life-span extended donor cells transfected with a foreign gene might be a cause of chromosomal abnormality in donor cells.

Generation of Embryonic Stem Cell-derived Transgenic Mice by using Tetraploid Complementation

  • Park, Sun-Mi;Song, Sang-Jin;Choi, Ho-Jun;Uhm, Sang-Jun;Cho, Ssang-Goo;Lee, Hoon-Taek
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.121-121
    • /
    • 2003
  • The standard protocol for the production of transgenic mouse from ES-injected embryo has to process via chimera producing and several times breeding steps, In contrast, tetraploid-ES cell complementation method allows the immediate generation of targeted murine mutants from genetically modified ES cell clones. The advantage of this advanced technique is a simple and efficient without chimeric intermediates. Recently, this method has been significantly improved through the discovery that ES cells derived from hybrid strains support the development of viable ES mice more efficiently than inbred ES cells do. Therefore, the objective of this study was to generate transgenic mice overexpressing human resistin gene by using tetrapioid-ES cell complementation method. Human resistin gene was amplified from human fetal liver cDNA library by PCR and cloned into pCR 2.1 TOPO T-vector and constructed in pCMV-Tag4C vector. Human resistin mammalian expression plasmid was transfected into D3-GL ES cells by lipofectamine 2000, and then after 8~10 days of transfection, the human resistin-expressing cells were selected with G418. In order to produce tetraploid embryos, blastomeres of diploid embryos at the two-cell stage were fused with two times of electric pulse using 60 V 30 $\mu$sec. (fusion rate : 93.5%) and cultured upto the blastocyst stage (development rate : 94.6%). The 15~20 previously G418-selected ES cells were injected into tetraploid blastocysts, and then transferred into the uterus of E2.5d pseudopregnant recipient mice. To investigate the gestation progress, two El9.5d fetus were recovered by Casarean section and one fetus was confirmed to contain human resistin gene by genomic DNA-PCR. Therefore, this finding demonstrates that tetraploid-ES mouse technology can be considered as a useful tool to produce transgenic mouse for the rapid analysis of gene function in vivo.

  • PDF

DNA Bis-intercalating Agent, Echinomycin-induced Apoptosis via Bcl-2 Dependence Pathway in Human Colon Cancer Cells

  • Park, Ju-Youn;Ryang, Yong-Suk;Kim, Jong-Bae;Chang, Jae-Ho;Cho, Hyeon-Cheol;Kim, Soo-Ki
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.2
    • /
    • pp.144-149
    • /
    • 2008
  • Despite versatile activity (cancericidal, antimicrobial, hypoxia inducible factor (HIF) inhibition, immune deactivation of DNA bis-intercalation agent, echinomycin, its specific mechanism has been elusive. Of these novel mechanisms, we reported that using human colon cancer cells (HT-29), apoptotic machinery induced by echinomycin might be dependent of caspase-3 pathway. Despite a partial enlightenment of prototypic signal path triggered by echinomycin, the role of Bcl-2 in this signaling pathway is unclear. To address this issue, we explored whether or not echinomycin would overcome the anti-apoptotic impact of Bcl-2 in HT-29 cells by the controlled Bcl-2 overexpression. Prior to this proof, we confirmed that echinomycin induces mitochondrial depolarization, then triggering the mitochondrial pathway of apoptosis with an involvement of upstream cas-pases-3. Transiently transfection with inactive Bax-DNA failed to prevent echinomycin-induced apoptosis in HT-29 cells. To dissect the role of Bcl-2 in echinomycin-induced apoptosis, HT-29 cells were transiently transfected with Bcl-2 DNA for overexpression and then treated with echinomycin for 24h. Combined analyses of DNA fragmentation and flow cytometric analysis clearly verified that echinomycin-induced apoptosis was drastically attenuated by Bcl-2 overexpression, whereas a control vector rarely affected echinomycin-induced apoptosis. Collectively, these data verify that Bcl-2 regulates echinomycin-induced apoptosis in HT-29 cells. To my knowledge, this is the first evidence that of diverse, structured minor groove binders (MGB), the prototypic echinomycin might control the apoptotic signaling via Bcl-2-mitochondrial pathway.

Expression of Polyhistidine-Containing Fusion Human HepG2 Type Glucose Transport Protein in Spodoptera Cells and Its Purification Using a Metal Affinity Chromatography

  • Lee, Chong-Kee
    • Biomedical Science Letters
    • /
    • v.16 no.3
    • /
    • pp.201-206
    • /
    • 2010
  • In order to develop procedures for the rapid isolation of recombinant sugar transporter in functional form from away from the endogenous insect cell transporter, gene fusion techniques were exploited. Briefly, BamH1-digested human HepG2 type glucose transport protein cDNA was first cloned into a transfer vector pBlueBacHis, containing a tract of six histidine residues. Recombinant baculoviruses including the human cDNA were then generated by allelic exchange following transfection of insect cells with wild-type BaculoGold virus DNA and the recombinant transfer vector. Plaque assay was then performed to obtain and purify recombinant viruses expressing the human transport protein. All the cell samples that had been infected with viruses from the several blue plaques exhibited a positive reaction in the immnuassay, demonstrating expression of the glucose transport protein. In contrast, no color development in the immunoassay was observed for cells infected with the wild-type virus or no virus. Immunoblot analysis showed that a major immunoreactive band of apparent Mr 43,000~44,000 was evident in the lysate from cells infected with the recombinant baculovirus. Following expression of the recombinant fusion protein with the metal-binding domain and enterokinase cleavage site, the fusion protein was recovered by competition with imidizole using immobilized metal charged resin. The leader peptide was then removed from the fusion protein by cleavage with porcine enterokinase. Final separation of the recombinant protein of the interest was achieved by passage over $Ni^{2+}$-charged resin under binding conditions. The expressed transport protein bound cytochalasin B and demonstrated a functional similarity to its human counterpart.

Identification of Genes that are Induced after Cadmium Exposure by Suppression Subtractive Hybridization

  • 이미옥
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.107-107
    • /
    • 2003
  • The heavy metal cadmium is a xenobiotic toxicant of environmental and occupational concern and it has been classified as a human carcinogen. Inhalation of cadmium has been implicated in the development of emphysema and pulmonary fibrosis, but, the detailed mechanism by which cadmium induces adverse biological effects is not yet known. Therefore, we undertook the investigation of genes that are induced after cadmium exposure to illustrate the mechanism of cadmium toxicity For this purpose, we employed the polymerase chain reaction-based suppression subtractive hybridization technique. We identified 29 different cadmium-inducible genes in human peripheral mononuclear cells, such as macrophage migration inhibitory factor, lysophosphatidic acid acyltransferase-${\alpha}$, enolase-1${\alpha}$, VEGF, Bax, neuron-derived orphan receptor-1, and Nur77, which are known to be associated with inflammation, cell survival, and apoptosis. Induction of these genes by cadmium treatment was further confirmed by semi-quantitative reverse-transcription polymerase chain reaction. Further, we found that these genes were also induced after cadmium exposure in normal human lung fibroblast cell line, WI-38, suggesting potential use of this induction profile to monitor cadmium toxicity in the lung. Next, Nur77, one of cadmium-inducible genes, was further studied since the products of Nur77 are known to be involved in the apoptotic process of lung cells. Following cadmium treatment, Nur77 gene expression was increased at protein-level in A549 cells. Consistently, the reporter containing Nur77 binding sequence was activated by 2.5-fold after exposure to cadmium in reporter gene analysis by transient transfection experiments. When the plasmid encoding dominant negative Nur77 that represses the transcriptional function of wild-type Nur77 was transfected into A549 cells, the expression of Bax was significantly reduced, suggesting that induction of Nur77 was an important process in cadmium-induced apoptosis in the cells. Cadmium induced the expression of Nur77 in vivo, confirming the relevance of the data obtained in viro. Together our results suggest that Nur77 gene expression in exposure to cadmium leads apoptosis of lung cells which may cause pathological changes in lung.

  • PDF

Plasminogen Activator Inhibitor-1 Antisense Oligodeoxynucleotides Abrogate Mesangial Fibronectin Accumulation

  • Park, Je-Hyun;Seo, Ji-Yeon;Ha, Hun-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.385-390
    • /
    • 2010
  • Excessive extracellular matrix (ECM) accumulation is the main feature of chronic renal disease including diabetic nephropathy. Plasminogen activator inhibitor (PAI)-1 is known to play an important role in renal ECM accumulation in part through suppression of plasmin generation and matrix metalloproteinase (MMP) activation. The present study examined the effect of PAI-1 antisense oligodeoxynucleotide (ODN) on fibronectin upregulation and plasmin/MMP suppression in primary mesangial cells cultured under high glucose (HG) or transforming growth factor (TGF)-${\beta}1$, major mediators of diabetic renal ECM accumulation. Growth arrested and synchronized rat primary mesangial cells were transfected with $1\;{\mu}M$ phosphorothioate-modified antisense or control mis-match ODN for 24 hours with cationic liposome and then stimulated with 30 mM D-glucose or 2 ng/ml TGF-${\beta}1$. PAl-1 or fibronectin protein was measured by Western blot analysis. Plasmin activity was determined using a synthetic fluorometric plasmin substrate and MMP-2 activity analyzed using zymography. HG and TGF-${\beta}1$ significantly increased PAI-1 and fibronectin protein expression as well as decreased plasmin and MMP-2 activity. Transient transfection of mesangial cells with PAI-1 antisense ODN, but not mis-match ODN, effectively reversed basal as well as HG- and TGF-${\beta}1$-induced suppression of plasmin and MMP-2 activity. Both basal and upregulated fibronectin secretion were also inhibited by PAI-1 antisense ODN. These data confirm that PAI-1 plays an important role in ECM accumulation in diabetic mesangium through suppression of protease activity and suggest that PAI-1 antisense ODN would be an effective therapeutic strategy for prevention of renal fibrosis including diabetic nephropathy.

p38 MAPK Participates in Muscle-Specific RING Finger 1-Mediated Atrophy in Cast-Immobilized Rat Gastrocnemius Muscle

  • Kim, Jung-Hwan;Won, Kyung-Jong;Lee, Hwan-Myung;Hwang, Byong-Yong;Bae, Young-Min;Choi, Whan-Soo;Song, Hyuk;Lim, Ki-Won;Lee, Chang-Kwon;Kim, Bo-Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.6
    • /
    • pp.491-496
    • /
    • 2009
  • Skeletal muscle atrophy is a common phenomenon during the prolonged muscle disuse caused by cast immobilization, extended aging states, bed rest, space flight, or other factors. However, the cellular mechanisms of the atrophic process are poorly understood. In this study, we investigated the involvement of mitogen-activated protein kinase (MAPK) in the expression of muscle-specific RING finger 1 (MuRF1) during atrophy of the rat gastrocnemius muscle. Histological analysis revealed that cast immobilization induced the atrophy of the gastrocnemius muscle, with diminution of muscle weight and cross-sectional area after 14 days. Cast immobilization significantly elevated the expression of MuRF1 and the phosphorylation of p38 MAPK. The starvation of L6 rat skeletal myoblasts under serum-free conditions induced the phosphorylation of p38 MAPK and the characteristics typical of cast-immobilized gastrocnemius muscle. The expression of MuRF1 was also elevated in serum-starved L6 myoblasts, but was significantly attenuated by SB203580, an inhibitor of p38 MAPK. Changes in the sizes of L6 myoblasts in response to starvation were also reversed by their transfection with MuRF1 small interfering RNA or treatment with SB203580. From these results, we suggest that the expression of MuRF1 in cast-immobilized atrophy is regulated by p38 MAPK in rat gastrocnemius muscles.

Synergistic Effect of Natural Killer Cells and Bee Venom on Inhibition of NCI-H157 Cell Growth

  • Sung, Hee Jin;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.33 no.1
    • /
    • pp.47-56
    • /
    • 2016
  • Objectives : This study examined the effects of Bee venom on apoptosis in NCI-H157 human lung cancer cells and for promoting the apoptosis effects of Natural killer cell. Methods : Bee venom and Natural killer-92 cells were cultured either separately from or together with NCI-H157 cells for 24 hours. To figure out whether Bee venom enhances the cytotoxic effect of Natural Killer-92 cells, a cell viability assay was conducted. To observe the changes in Death receptors, apoptotic regulatory proteins and Nuclear $Factor-{\kappa}B$, western blot analysis was conducted. To observe the effect of Bee venom through an extrinsic mechanism, a transfection assay was conducted. Results : 1. Natural killer-92 cells and Bee venom significantly inhibited the growth of NCI-H157 cells and co-culture had more inhibitory effect than the separate culture. 2. Expressions of Fas, DR3, DR6, Bax, caspase-3, caspase-8, cleaved caspase-3, cleaved caspase-8 were increased, and expressions of Bcl-2 and cIAP were decreased. More efficacy was observed in co-culture than in separate culture. 3. Nuclear $Factor-{\kappa}B$ activation was clearly decreased. And co-culture showed much less activation than separate culture. 4. As a result of treatment for DR-siRNA, the reduced cell viability of NCI-H157 cells and the activity of Nuclear $Factor-{\kappa}B$ were increased. With this, it can be seen that Bee venom and Natural killer-92 cells have an effect on the cancer cells through the extrinsic mechanism. Conclusion : Bee venom is effective in inhibiting the growth of human lung cancer cells. Furthermore Bee venom effectively enhances the functions of Natural killer cells.

Cell to Cell Interaction Can Activate Membrane-bound APRIL Which Are Expressed on Inflammatory Macrophages

  • Lee, Sang-Min;Kim, Won-Jung;Suk, Kyoung-Ho;Lee, Won-Ha
    • IMMUNE NETWORK
    • /
    • v.10 no.5
    • /
    • pp.173-180
    • /
    • 2010
  • Background: APRIL, originally known as a cytokine involved in B cell survival, is now known to regulate the inflammatory activation of macrophages. Although the signal initiated from APRIL has been demonstrated, its role in cellular activation is still not clear due to the presence of BAFF, a closely related member of TNF superfamily, which share same receptors (TACI and BCMA) with APRIL. Methods: Through transfection of siRNA, BAFF-deficient THP-1 cells (human macrophage-like cells) were generated and APRIL-mediated inflammatory activities were tested. The expression patterns of APRIL were also tested in vivo. Results: BAFF-deficient THP-1 cells responded to APRIL-stimulating agents such as monoclonal antibody against APRIL and soluble form of TACI or BCMA. Furthermore, co-incubation of the siBAFF-deficient THP-1 cells with a human B cell line (Ramos) resulted in an activation of THP-1 cells which was dependent on interactions between APRIL and TACI/BCMA. Immunohistochemical analysis of human pathologic samples detected the expression of both APRIL and TACI in macrophage-rich areas. Additionally, human macrophage primary culture expressed APRIL on the cell surface. Conclusion: These observations indicate that APRIL, which is expressed on macrophages in pathologic tissues with chronic inflammation, may mediate activation signals through its interaction with its counterparts via cell-to-cell interaction.

Epigenetic and Glucocorticoid Receptor-Mediated Regulation of Glutathione Peroxidase 3 in Lung Cancer Cells

  • An, Byung Chull;Jung, Nak-Kyun;Park, Chun Young;Oh, In-Jae;Choi, Yoo-Duk;Park, Jae-Il;Lee, Seung-won
    • Molecules and Cells
    • /
    • v.39 no.8
    • /
    • pp.631-638
    • /
    • 2016
  • Glutathione peroxidase 3 (GPx3), an antioxidant enzyme, acts as a modulator of redox signaling, has immunomodulatory function, and catalyzes the detoxification of reactive oxygen species (ROS). GPx3 has been identified as a tumor suppressor in many cancers. Although hyper-methylation of the GPx3 promoter has been shown to down-regulate its expression, other mechanisms by which GPx3 expression is regulated have not been reported. The aim of this study was to further elucidate the mechanisms of GPx3 regulation. GPx3 gene analysis predicted the presence of ten glucocorticoid response elements (GREs) on the GPx3 gene. This result prompted us to investigate whether GPx3 expression is regulated by the glucocorticoid receptor (GR), which is implicated in tumor response to chemotherapy. The corticosteroid dexamethasone (Dex) was used to examine the possible relationship between GR and GPx3 expression. Dex significantly induced GPx3 expression in H1299, H1650, and H1975 cell lines, which exhibit low levels of GPx3 expression under normal conditions. The results of EMSA and ChIP-PCR suggest that GR binds directly to GRE 6 and 7, both of which are located near the GPx3 promoter. Assessment of GPx3 transcription efficiency using a luciferase reporter system showed that blocking formation of the GR-GRE complexes reduced luciferase activity by 7-8-fold. Suppression of GR expression by siRNA transfection also induced down-regulation of GPx3. These data indicate that GPx3 expression can be regulated independently via epigenetic or GR-mediated mechanisms in lung cancer cells, and suggest that GPx3 could potentiate glucocorticoid (GC)-mediated anti-infla-mmatory signaling in lung cancer cells.