• Title/Summary/Keyword: Transducer

Search Result 2,025, Processing Time 0.027 seconds

A Study on the Actual Output and Thermal Effect in Tissue Mimicking Phantom by the Material of the Ultrasonic Transducer (초음파트랜스듀서의 재질에 따른 실출력과 인체모사조직의 온열효과에 관한 연구)

  • Yoo, Sang-Hyun;Choi, Won-Jae;Lee, Seung-Won
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.10 no.1
    • /
    • pp.91-97
    • /
    • 2015
  • PURPOSE: In this study investigated the thermal effect in tissue mimicking phantom by the material of the ultrasonic transducer in low intensity sonication. METHODS: The material of the ultrasonic transducer was made of ceramic, stainless steel, aluminum. Korea Testing Laboratory was measured of the three kinds of materials the total output of the ultrasonic transducer. Each material was measured core temperature and the actual output depending on the type of transducer. Agarose tissue mimicking phantom and silicone tissue mimicking phantom was made. Transducers made of three kinds of materials were emitted in the phantom. It is shown as a graph about time and temperature and the surface temperature rising speed and deep temperature rise rate was investigated. RESULTS: Ceramic transducers were highest output. Higher than the stainless steel transducer, aluminum had the lowest total output. Deep temperature was the highest in the ceramic transducer, and the surface temperature was the highest in the stainless steel transducer. Thermal images of ceramic transducer showed that a valid output is formed deeper wider than the metal. CONCLUSION: Ceramic transducer is confirmed the excellence than the metal transducer in deep thermal effect and the actual output of the ultrasound.

Optimal Structural Design of a Tonpilz Transducer Considering the Characteristic of the Impulsive Shock Pressure (충격 특성을 고려한 Tonpilz 변환기의 최적구조 설계)

  • Kang, Kook-Jin;Roh, Yong-Rae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.987-994
    • /
    • 2008
  • The optimal structure of the Tonpilz transducer was designed. First, the FE model of the transducer was constructed, that included all the details of the transducer which used practical environment. The validity of the FE model was verified through the impedance analysis of the transducer. Second, the resonance frequency, the sound pressure, the bandwidth, and the impulsive shock pressure of the transducer in relation to its structural variables were analyzed. Third, the design method of $2^n$ experiments was employed to reduce the number of analysis cases, and through statistical multiple regression analysis of the results, the functional forms of the transducer performances that could consider the cross-coupled effects of the structural variables were derived. Based on the all results, the optimal geometry of the Tonpilz transducer that had the highest sound pressure level at the desired working environment was determined through the optimization with the SQP-PD method of a target function composed of the transducer performance. Furthermore, for the convenience of a user, the automatic process program making the optimal structure of the acoustic transducer automatically at a given target and a desired working environment was made. The developed method can reflect all the cross-coupled effects of multiple structural variables, and can be extended to the design of general acoustic transducers.

Study about all sorts of transducer used in total automation (전력설비종합자동화에 이용되는 각종 transducer에 관한 연구)

  • 문국연;김희문
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.572-576
    • /
    • 1989
  • Transducer interfaces computer system with electric system. It is important in electric automation system. The characteristics, sorts, component of transducer is introduced in this paper. Previously, in order to support comprehension of transducer, we explain the necessity of computer system control, system components, the principle of operation.

  • PDF

Characteristic Variation of Underwater Acoustic Transducer with Long Term Operation (능동 수중음향 트랜스듀서의 장기동작 특성)

  • Seo, Hee-Seon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.817-820
    • /
    • 2006
  • The Tonpilz transducer is one of the essential elements in active sonar application. The characteristics of transducer depend on the piezoelectric ceramics and mechanical elements such as head mass, tail mass, pre-stress rod and so on. One of the important characteristics is electric and mechanical stability of transducer for long term high power transmitting operation. This parer presents the results about long term endurance tests of the underwater acoustic transducer.

  • PDF

Under Water Sonar Transducer Using Terfenol-D Magnetostrictive Material

  • Son, Derac;Cho, Yuk
    • Journal of Magnetics
    • /
    • v.4 no.3
    • /
    • pp.98-101
    • /
    • 1999
  • In this work we htave constructed an under water sonar transducer using Terfenol-D rod employing open magnetic circuit. Normally Sonar transducer using Terfenol-D was designed under closed magnetic flux return path, and permanent magnet for dc bias marnetic field, but high magnetic field should be applied to the transducer coil for high sound power and it brings temperature increase inside of the transducer. To improve this heat dissipation problem, we have designed an open magnetic circuit type transducer and we can get 200 dB (re. 1 Pa @ 1m) sound power for the input power of 650 VA.

  • PDF

Dynamic Analysis of Piezoelectric Sonar Transducer (압전재료를 이용한 수중음향 센서의 동적 해석)

  • Yu, Nanhui;Kim, Heung-Soo;Kim, Jae-Hwan;Roh, Yong-Rae;Joh, Chee-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.196-200
    • /
    • 2005
  • Piezoelectric underwater acoustic transducer is a kind of device for underwater detection working as not only an actuator but also a sensor. The technique that can predict acoustical characteristics of transducer is important for robust design of transducer in harsh underwater environment. This paper represents the dynamic analysis of piezoelectric acoustic transducers based on finite element method through USAP software. Two dimensional model of Tonpilz transducer and three dimensional model of Flextensional transducer are generated for the dynamic analysis and some results obtained by USAP are compared with those by ANSYS.

  • PDF

Bandwidth Improvement of a Multi-resonant Broadband Acoustic Transducer (다중 공진 광대역 음향변환기의 대역폭 개선)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.5
    • /
    • pp.605-615
    • /
    • 2017
  • A multi-resonant broadband acoustic transducer with six Tonpilz elements operating at different resonant frequencies in a transducer assembly was fabricated, tested, and analyzed. A compensated transducer, modified by adding series inductance to the developed multi-resonant broadband transducer, was shown to provide improved bandwidth performance with a relatively more uniform frequency response compared with the uncompensated transducer. By controlling the series inductance, flat frequency response characteristics at two frequency bands were obtained over the range 38-52 kHz with 1.1 mH inductance and 50-60 kHz with 0.4 mH inductance. These results suggest that the operating frequency of the developed multi-resonant broadband transducer in a chirp echo sounder can be shifted to a different frequency band that is optimized according to the environment for more effective echo surveys of fishing grounds.

Ultrasonic Transducers for Medical Volumetric Imaging

  • Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.3E
    • /
    • pp.111-118
    • /
    • 2010
  • Three-dimensional ultrasound imaging is a new, exciting technology that allows physicians to use ultrasound to view pathology as a volume, thereby enhancing comprehension of patient anatomy. In this paper, a brief history of the 3-D ultrasound imaging is described in accordance with the development of transducer technology. Then, two representative types of 3-D imaging transducers are reviewed with description of the concept and operation principle of each type: mechanical transducer and matrix array transducer. The mechanical transducer is detailed into free-hand scanning and sequential scanning types. Advantages of each transducer over the other and the technical issues for further performance enhancement are also presented.

Ultrasonic Transducers for Measuring Both Flow Velocity and Pipe Thickness (유속 및 파이프 두께 측정 겸용 초음파 트랜스듀서)

  • Kim, Ju Wan;Piao, Chunguang;Kim, Jin Oh;Park, Doo-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.8
    • /
    • pp.559-567
    • /
    • 2015
  • The paper deals with an ultrasonic transducer invented for measuring both flow velocity and pipe thickness. The structure of the transducer is based on the conventional transducers for measuring flow velocity by obliquely transmitting ultrasonic waves to the flow direction. The transducer additionally generates ultrasonic waves transmitting vertically to a pipe for measuring pipe thickness. By measuring flow velocity with the invented transducer and a conventional oblique-incidence transducer and comparing their results, the accuracy of the flow velocity measurement of the invented one was evaluated. By measuring specimen thickness with the invented transducer and a conventional normal-incidence transducer and comparing their results, the accuracy of the thickness measurement of the invented one was evaluated.

Analysis on the cascade high power piezoelectric ultrasonic transducers

  • Lin, Shuyu;Xu, Jie
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.151-161
    • /
    • 2018
  • A new type of cascade sandwiched piezoelectric ultrasonic transducer is presented and studied. The cascade transducer is composed of two traditional longitudinally sandwiched piezoelectric transducers, which are connected together in series mechanically and in parallel electrically. Based on the analytical method, the electromechanical equivalent circuit of the cascade transducer is derived and the resonance/anti-resonance frequency equations are obtained. The impedance characteristics and the vibrational modes of the transducer are analyzed. By means of numerical method, the dependency of the resonance/anti-resonance frequency and the effective electromechanical coupling coefficient on the geometrical dimensions of the cascade transducer are studied and some interesting conclusions are obtained. Two prototypes of the cascade transducers are designed and made; the resonance/anti-resonance frequency is measured. It is shown that the analytical resonance/anti-resonance frequencies are in good agreement with the experimental results. It is expected that this kind of cascade transducer can be used in large power and high intensity ultrasonic applications, such as ultrasonic liquid processing, ultrasonic metal machining and ultrasonic welding and soldering.