• Title/Summary/Keyword: Transcritical $CO_2$ cycle

Search Result 33, Processing Time 0.041 seconds

Experimental Study on the Variation of the optimal charge with cycle option in the $CO_2$ Refrigeration (이산화탄소 냉동사이클에서 사이클 사양에 따른 최적충전량 변화에 관한 실험적 연구)

  • Cho, Hong-Hyun;Ryu, Chang-Gi;Lee, Ho-Seong;Kim, Yong-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.398-403
    • /
    • 2005
  • The cooling performance of a transcritical $CO_2$ cycle varies significantly with a variation of refrigerant charge amount. In this study, the performance of the $CO_2$ system was measured and analyzed by varying refrigerant charge amount with a change of cycle option. The applied cycle options are the single-stage compression system, two-stage compression with 1-EEV system, and two-stage compression with 2- EEV system. The optimum normalized charge were 0.363, 0.297, and 0.282 for the two-stage compression with 2-EEV system, two-stage compression with 1-EEV system, and single-stage compression system, respectively.

  • PDF

Design and Evaluation of Small-scale Supercritical Carbon Dioxide System with Solar Heat Source (태양열 적용을 위한 소형 초임계 이산화탄소 실험설비 설계 및 평가)

  • Choi, Hundong;So, Wonho;Lee, Jeongmin;Cho, Kyungchan;Lee, Kwon-yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.403-410
    • /
    • 2020
  • This paper focuses on the design of a 12-kW small-scale supercritical CO2 test loop. A theoretical study, stabilization, and optimization of carbon dioxide were carried out with the application of a solar heat source based on solar thermal data in Pohang. The thermodynamic cycle of the test facility is a Rankine cycle (transcritical cycle), which contains liquid, gas, and supercritical CO2. The system is designed to achieve 6.98% efficiency at a maximum pressure of 12 MPa and a maximum temperature of 70℃. In addition, the optimum turbine inlet temperature and pressure were calculated to increase the cycle efficiency, and the application of an internal heat exchanger (IHX) was simulated. It was found that the maximum efficiency increases to 18.75%. The simulation confirmed that the efficiency of the cycle is 6.7% in May and 6.26% in June.

Performance Analysis of R744(Carbon Dioxide) for Transcritical Refrigeration System (R744용 초임계 냉동사이클의 성능 분석)

  • Roh, Geun-Sang;Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.32-38
    • /
    • 2009
  • In this paper, cycle performance analysis for cooling capacity, compression work and COP of R744($CO_2$) transcritical vapor compression refrigeration system is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include superheating degree, outlet temperature of gas cooler and evaporating temperature in the R744 vapor compression cycle. The main results were summarized as follows : The cooling capacity of R744 increases with superheating degree, but decreases with the increasing evaporating temperature and outlet temperature of gas cooler. The compression work increases with superheating degree and cooling pressure of R744, but decreases with the increasing evaporating temperature. And, The COP increases with outlet temperature and evaporating temperature of R744 gas cooler, but decreases with the increasing superheating degree. Therefore, superheating degree, outlet temperature and evaporating temperature of R744 vapor compression refrigeration system have an effect on the cooling capacity, compression work and COP of this system. With a thorough grasp of these effect, it is necessary to design the compression refrigeration cycle using R744.

$CO_2$ Transcritical Cycle Research at CEEE

  • Hwang, Yun-Ho;Radermacher, Reinhard
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.31 no.7
    • /
    • pp.45-52
    • /
    • 2002
  • 1991년에 Maryland 대학에 Dr. Reinhard Rader-macher에 의해 환경에너지공학연구소(CEEE)가 설립되었다. 이 연구소는 환경 및 경제적인 관점에서 에너지 변환 시스템을 개발하는데 선두적인 역할들 수행해왔다. 환경 에너지 공학 연구소는 산업체, 정부,및 연구소에서 지원 받는 컨소시엄 형태의 연구 센터이다. 대체 냉매, $CO_2$초월임계 사이클에 관한 연구를 1993년에 시작한 이래, 현재 세계적으로 40여 개의 회사가 지원을 하고 있다. 2단 압축 $CO_2$ 사이클 최적화, 초월 임계 사이클에서의 오일에 따른 열전달 영향, 초월$CO_2$임계 시스템에서의 오일 정체, $CO_2$압축기 모델링, 자동차에서의 $CO_2$기후 조절 시스템, $CO_2$냉매를 이용한 에어컨, $CO_2$저온 냉동 시스템 등에 관한 연구를 수행하고 있다. CEEE는 향후 연구로 구성요소 및 시스템 최적화, 효율향상, 시스템 적용확대에 관한 연구를 할 예정이다. 센터는 보고서, 컨소시엄 미팅. 워크샵, 교과목 개설, 당문 연구자 초청들을 통해 산업계 및 기술을 전달하고 있다. 본 고에서는 환경에너지 공학 연구소에서 $CO_2$ 초월임계 사이클에 초점을 맞추어 연구소의 연구활동을 기술한다.

  • PDF

Cooling and Heating Performances of a CO2 Heat Pump with the Variations of Operating Conditions (운전조건 변화에 따른 이산화탄소 열펌프의 냉난방 성능특성 비교)

  • Cho, Hong-Hyun;Baek, Chang-Hyun;Lee, Eung-Chan;Kang, Hun;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.6
    • /
    • pp.454-462
    • /
    • 2008
  • Since operating conditions are significantly different for heating and cooling mode operations in a $CO_2$ heat pump system, it is difficult to optimize the performance of the $CO_2$ cycle. In addition, the performance of a $CO_2$ heat pump is very sensitive to outdoor temperature and gascooler pressure. In this study, the cooling and heating performances of a variable speed $CO_2$ heat pump with a twin-rotary compressor were measured and analyzed with the variations of EEV opening and compressor frequency. As a result, the cooling and heating COPs were 2.3 and 3.0, respectively, when the EEV opening was 22%. When the optimal EEV openings for heating and cooling were 28% and 16%, the cooling and heating COPs increased by 3.3% and 3.9%, respectively, over the COPs at the EEV opening of 22%. Beside, the heating performance was more sensitive to EEV opening than the cooling performance. As the compressor speed decreased by 5 Hz, the cooling COP increased by 2%, while the heating COP decreased by 8%.

Performance analysis for load control of R744(carbon dioxide) transcritical refrigeration system using hot gas by-pass valve (핫가스 바이패스 밸브를 이용한 R744용 초임계 냉동사이클의 부하제어에 대한 성능 분석)

  • Roh, Geun-Sang;Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2189-2194
    • /
    • 2009
  • The automatic hot gas by-pass technique is applied to control the capacity of refrigeration and air-conditioning system when operating at part load. In the scheme, the hot gas from the compressor is extracted and injected into the outlet of an evaporator through a hot gas by-pass valve. Thus, In this paper, the hot gas by-pass scheme for CO2 is discussed and analyzed on the basis of mass and energy conservation law. A comparative study of the schemes is performed in terms of the coefficiency of performance (COP) and cooling capacity. The operating parameters considered in this study include compressor efficiency, superheating degree, outlet temperature of gas cooler and evaporating temperature in the R744 vapor compression cycle. The main results were summarized as follows : the superheating degree, outlet temperature and evaporating temperature of R744 vapor compression refrigeration system have an effect on the cooling capacity and COP of this system. With a thorough grasp of these effect, it is necessary to design the compression refrigeration cycle using R744.

Performance Analysis of a Carbon Dioxide(R744) Two-Stage Compression and One-Stage Expansion Refrigeration Cycle ($CO_2$용 2단압축 1단팽창 냉동 사이클의 성능 분석)

  • Roh, G.S.;Son, C.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.70-75
    • /
    • 2009
  • In this paper, cycle performance analysis of R744($CO_2$) two-stage compression and one-stage expansion refrigeration system is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include superheating degree, compressor efficiency, gas cooling pressure, mass flowrate ratio, outlet temperature of gas cooler and evaporating temperature in the carbon dioxide two-stage refrigeration cycle. The main results were summarized as follows : The cooling capacity of two-stage compression and one-stage expansion refrigeration system increases with the increasing superheating degree, compressor efficiency and gas cooling pressure, but decreases with the increasing mass flowrate ratio and evaporating temperature. The compression work of two-stage compression and one-stage expansion refrigeration system increases with the increasing superheating degree, outlet temperature of gas cooler, gas cooling pressure and evaporating temperature, but decreases with the increasing compressor efficiency and mass flowrate ratio. The COP of two-stage compression and one-stage expansion refrigeration system increases with the increasing compressor efficiency, but decreases with the increasing superheating degree, gas cooling pressure, mass flowrate ratio and evaporating temperature. Therefore, superheating degree, compressor efficiency, gas cooling pressure, mass flowrate ratio, outlet temperature of gas cooler and evaporating temperature of R744($CO_2$) two-stage compression and one-stage expansion refrigeration system have an effect on the cooling capacity, compressor work and COP of this system.

  • PDF

Cooling Heat Transfer Characteristics of CO2 in a Brazing Type Small Diameter Copper Tube (브레이징식 동세관내 CO2의 냉각 열전달 특성)

  • Oh, Hoo-Kyu;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.827-834
    • /
    • 2009
  • The cooling heat transfer coefficient of $CO_2$ in a brazing type small diameter tube was investigated experimentally. The main components of the refrigerant loop are a receiver, a $CO_2$ compressor, a mass flow meter, an evaporator and a brazing type small diameter tube as a test section. The mass flux of $CO_2$ is $400{\sim}1600$ [kg/$m^2s$], the mass flowrate of coolant were varied from 0.15 to 0.3 [kg/s], and the cooling pressure of gas cooler were from 8 to 10 [MPa]. The cooling heat transfer coefficients of the brazing type small diameter copper tube is about $4{\sim}11.7%$ higher than that of the conventional type small diameter copper tube. In comparison with test results and existing correlations, correlations failed to predict the cooling heat transfer coefficient of $CO_2$ in a brazing type small diameter copper tube. therefore, it is necessary to develope reliable and accurate predictions determining the cooling heat transfer coefficient of $CO_2$ in a brazing type small diameter copper tube.

Experimental Studies on the Performance Characteristics of Heat Exchangers of $CO_2$ Air Conditioning System for Vehicle (자동차용 $CO_2$ 에어컨 시스템 열교환기 성능 특성에 관한 실험적 연구)

  • Kim, Sung-Chul;Lee, Dong-Hyuk;Won, Jong-Phil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.146-153
    • /
    • 2009
  • The performance characteristics of heat exchangers which consist of a gas cooler, an evaporator and an internal heat exchanger have been investigated at various operating conditions of $CO_2$ air conditioning system by experiments. The heat exchangers were designed for use in the vehicle $CO_2$ air conditioning system, when considering the characteristics of heat transfer and high pressure as $CO_2$ refrigerant. This paper studied the performance of heat exchangers at various compressor speeds and expansion valve openings, and quantified the heat transfer rates and pressure drops. Heat transfer rates at the gas cooler and the evaporator were 6.9 kW and 5.2 kW, respectively, when the compressor speed was 4000 rpm and refrigerant vapor quality at the evaporator outlet was 0.98. Therefore, this paper carried out that the heat exchangers were analyzed to achieve superior performance for the vehicle transcritical $CO_2$ cycle.

Performance Characteristics of a CO2 Cooling and Water Heating System with a Twin-rotary Compressor (트윈로터리 압축기 적용 냉방 및 급탕 겸용 이산화탄소 시스템의 성능특성에 관한 연구)

  • Cho, Hong-Hyun;Lee, Ho-Sung;Baek, Chang-Hyun;Kim, Yong-Chan;Cho, Sung-Wook
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.4
    • /
    • pp.230-237
    • /
    • 2008
  • The objective of this paper is to investigate the performance characteristics of a $CO_2$ cooling and water heating system using a twin-rotary compressor with the compression volume ratio of 0.6. The cooling performances of the $CO_2$ heat pump were measured and analyzed with the variations of charge amount, EEV opening, and compressor frequency. In addition, the performance of the combined system including cooling and water heating was also measured and analyzed by varying inlet temperature of the EEV. As a result, the optimal normalized charge and cooling COP in the cooling mode were 0.307 and 2.06, respectively. The application of the water heating into the $CO_2$ heat pump improved the cooling performance over 78% and decreased the EEV inlet temperature by $8^{\circ}C$, which can increase system reliability.