• Title/Summary/Keyword: Transcriptomic

Search Result 131, Processing Time 0.026 seconds

OrCanome: a Comprehensive Resource for Oral Cancer

  • Bhartiya, Deeksha;Kumar, Amit;Singh, Harpreet;Sharma, Amitesh;Kaushik, Anita;Kumari, Suchitra;Mehrotra, Ravi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1333-1336
    • /
    • 2016
  • Oral cancer is one of the most prevalent cancers in India but the underlying mechanisms are minimally unraveled. Cancer research has immensely benefited from genome scale high throughput studies which have contributed to expanding the volume of data. Such datasets also exist for oral cancer genes but there has been no consolidated approach to integrate the data to reveal meaningful biological information. OrCanome is one of the largest and comprehensive, user-friendly databases of oral cancer. It features a compilation of over 900 genes dysregulated in oral cancer and provides detailed annotations of the genes, transcripts and proteins along with additional information encompassing expression, inhibitors, epitopes and pathways. The resource has been envisioned as a one-stop solution for genomic, transcriptomic and proteomic annotation of these genes and the integrated approach will facilitate the identification of potential biomarkers and therapeutic targets.

Xanthomonas oryzae pv. oryzae triggers complex transcriptomic defense network in rice

  • Nino, Marjohn;Nogoy, Franz M.;Song, Jae-Young;Kang, Kwon-Kyoo;Cho, Yong-Gu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.164-164
    • /
    • 2017
  • High throughput transcriptome investigations of immunity in plants highlight the complexity of gene networks leading to incompatible interaction. To identify genes crucial to resistance against Xanthomonas oryzae pv oryzae, functional genetic analysis of selected differentially expressed genes from our microarray data set was carried out. A total of 13 overexpression vector constructs were made using 35S CaMV promoter which drive constitutive expression in rice. Most of the genes are developmentally expressed especially during maximum tillering stage and are commonly highly expressed in the leaves. When screened against Xoo strain K2, the transgenic plants displayed shorter lesion length compared with wild type Dongjin which indicates partial resistance. The levels of ROS continuously magnified after inoculation which indicates robust cellular sensing necessary to initiate cell death. Elevated transcripts levels of several defense-related genes at the downstream of defense signal network also corroborate the phenotype reaction of the transgenic plants. Moreover, expression assays revealed regulation of these genes by cross-communicating signal-transductions pathways mediated by salicylic and jasmonic acid. These collective findings revealed the key immune signaling conduits critical to mount full defense against Xoo.

  • PDF

De novo transcriptome sequencing and gene expression profiling with/without B-chromosome plants of Lilium amabile

  • Park, Doori;Kim, Jong-Hwa;Kim, Nam-Soo
    • Genomics & Informatics
    • /
    • v.17 no.3
    • /
    • pp.27.1-27.9
    • /
    • 2019
  • Supernumerary B chromosomes were found in Lilium amabile (2n = 2x = 24), an endemic Korean lily that grows in the wild throughout the Korean Peninsula. The extra B chromosomes do not affect the host-plant morphology; therefore, whole transcriptome analysis was performed in 0B and 1B plants to identify differentially expressed genes. A total of 154,810 transcripts were obtained from over 10 Gbp data by de novo assembly. By mapping the raw reads to the de novo transcripts, we identified 7,852 differentially expressed genes (log2FC > |10|), in which 4,059 and 3,794 were up-and down-regulated, respectively, in 1B plants compared to 0B plants. Functional enrichment analysis revealed that various differentially expressed genes were involved in cellular processes including the cell cycle, chromosome breakage and repair, and microtubule formation; all of which may be related to the occurrence and maintenance of B chromosomes. Our data provide insight into transcriptomic changes and evolution of plant B chromosomes and deliver an informative database for future study of B chromosome transcriptomes in the Korean lily.

Beyond gene expression level: How are Bayesian methods doing a great job in quantification of isoform diversity and allelic imbalance?

  • Oh, Sunghee;Kim, Chul Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.1
    • /
    • pp.225-243
    • /
    • 2016
  • Thanks to recent advance of next generation sequencing techniques, RNA-seq enabled to have an unprecedented opportunity to identify transcript variants with isoform diversity and allelic imbalance (Anders et al., 2012) by different transcriptional rates. To date, it is well known that those features might be associated with the aberrant patterns of disease complexity such as tissue (Anders and Huber, 2010; Anders et al., 2012; Nariai et al., 2014) specific differential expression at isoform levels or tissue specific allelic imbalance in mal-functionality of disease processes, etc. Nevertheless, the knowledge of post-transcriptional modification and AI in transcriptomic and genomic areas has been little known in the traditional platforms due to the limitation of technology and insufficient resolution. We here stress the potential of isoform variability and allelic specific expression that are relevant to the abnormality of disease mechanisms in transcriptional genetic regulatory networks. In addition, we systematically review how robust Bayesian approaches in RNA-seq have been developed and utilized in this regard in the field.

Investigation of biodegradation pathway of dibenzofuran by Novosphingobium pentaromativorans US6-1 via transcriptomic and mass-spectrometric analysis (전사체와 대사물질 구조분석을 통한 Novosphingobium pentaromativorans US6-1의 dibenzofuran 분해 경로 해석)

  • Na, Hyeyun;Kwon, KaeKyoung
    • Korean Journal of Microbiology
    • /
    • v.54 no.1
    • /
    • pp.46-52
    • /
    • 2018
  • Biodegradation pathway of dibenzofuran (DBF) of Novosphingobium pentaromativorans US6-1, a high-molecular-weight polycyclic aromatic hydrocarbons degrading strain, was investigated via analysis of metabolic intermediates and transcriptome. As a result, 3(2H)-benzofuranone, a basic skeleton of the metabolic intermediates produced by lateral dioxygenation process, was detected as an intermediate. RNA-Seq analysis confirmed that most of the expressed genes upon exposure to DBF were related to the lateral degradation pathway. Based on these results, the biodegradation pathway of DBF by N. pentaromativorans US6-1 was proposed.

Chromosome-Centric Human Proteome Study of Chromosome 11 Team

  • Hwang, Heeyoun;Kim, Jin Young;Yoo, Jong Shin
    • Mass Spectrometry Letters
    • /
    • v.12 no.3
    • /
    • pp.60-65
    • /
    • 2021
  • As a part of the Chromosome-centric Human Proteome Project (C-HPP), we have developed a few algorithms for accurate identification of missing proteins, alternative splicing variants, single amino acid variants, and characterization of function unannotated proteins. We have found missing proteins, novel and known ASVs, and SAAVs using LC-MS/MS data from human brain and olfactory epithelial tissue, where we validated their existence using synthetic peptides. According to the neXtProt database, the number of missing proteins in chromosome 11 shows a decreasing pattern. The development of genomic and transcriptomic sequencing techniques make the number of protein variants in chromosome 11 tremendously increase. We developed a web solution named as SAAvpedia for identification and function annotation of SAAVs, and the SAAV information is automatically transformed into the neXtProt web page using REST API service. For the 73 uPE1 in chromosome 11, we have studied the function annotaion of CCDC90B (NX_Q9GZT6), SMAP (NX_O00193), and C11orf52 (NX_Q96A22).

A New Putative Chitinase from Reticulitermes speratus KMT001

  • Ham, Youngseok;Park, Han-Saem;Kim, Yeong-Suk;Kim, Tae-Jong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.371-380
    • /
    • 2019
  • Termites are pests that cause serious economic and cultural damage by digesting wood cellulose. Termites are arthropods and have an epidermis surrounded by a chitin layer. To maintain a healthy epidermis, termites have chitinase (${\beta}$-1,4-poly-N-acetyl glucosamidinase, EC 3.2.1.14), an enzyme that hydrolyzes the ${\beta}$-1,4 bond of chitin. In this study, the amino acid sequence of the gene, which is presumed to be termite chitinolytic enzyme (NCBI accession no. KC477099), was obtained from a transcriptomic analysis of Reticulitermes speratus KMT001 in Bukhan Mountain, Korea. An NCBI protein BLAST search confirmed that the protein is a glycoside hydrolase family 18 (GH18). The highest homology value found was 47%, with a chitinase from Araneus ventricosus. Phylogenetic analysis indicated that the KC477099 protein has the same origins as those of arthropods but has a very low similarity with other arthropod chitinases, resulting in separation at an early stage of evolution. The KC477099 protein contains two conserved motifs, which encode the general enzymatic characteristics of the GH18 group. The amino acid sequences $Asp^{156}-Trp^{157}-Glu^{158}$, which play an important role in the enzymatic activity of the GH18 group, were also present. This study suggests that the termite KC477099 protein is a new type of chitinase, which is evolutionarily distant from other insect chitinases.

Transcriptome Analysis and Expression Profiling of Molecular Responses to Cd Toxicity in Morchella spongiola

  • Xu, Hongyan;Xie, Zhanling;Jiang, Hongchen;Guo, Jing;Meng, Qing;Zhao, Yuan;Wang, Xiaofang
    • Mycobiology
    • /
    • v.49 no.4
    • /
    • pp.421-433
    • /
    • 2021
  • Morchella is a genus of fungi with the ability to concentrate Cd both in the fruit-body and mycelium. However, the molecular mechanisms conferring resistance to Cd stress in Morchella are unknown. Here, RNA-based transcriptomic sequencing was used to identify the genes and pathways involved in Cd tolerance in Morchella spongiola. 7444 differentially expressed genes (DEGs) were identified by cultivating M. spongiola in media containing 0.15, 0.90, or 1.50 mg/L Cd2+. The DEGs were divided into six sub-clusters based on their global expression profiles. GO enrichment analysis indicated that numerous DEGs were associated with catalytic activity, cell cycle control, and the ribosome. KEGG enrichment analysis showed that the main pathways under Cd stress were MAPK signaling, oxidative phosphorylation, pyruvate metabolism, and propanoate metabolism. In addition, several DEGs encoding ion transporters, enzymatic/non-enzymatic antioxidants, and transcription factors were identified. Based on these results, a preliminary gene regulatory network was firstly proposed to illustrate the molecular mechanisms of Cd detoxification in M. spongiola. These results provide valuable insights into the Cd tolerance mechanism of M. spongiola and constitute a robust foundation for further studies on detoxification mechanisms in macrofungi that could potentially lead to the development of new and improved fungal bioremediation strategies.

Single-Cell Toolkits Opening a New Era for Cell Engineering

  • Lee, Sean;Kim, Jireh;Park, Jong-Eun
    • Molecules and Cells
    • /
    • v.44 no.3
    • /
    • pp.127-135
    • /
    • 2021
  • Since the introduction of RNA sequencing (RNA-seq) as a high-throughput mRNA expression analysis tool, this procedure has been increasingly implemented to identify cell-level transcriptome changes in a myriad of model systems. However, early methods processed cell samples in bulk, and therefore the unique transcriptomic patterns of individual cells would be lost due to data averaging. Nonetheless, the recent and continuous development of new single-cell RNA sequencing (scRNA-seq) toolkits has enabled researchers to compare transcriptomes at a single-cell resolution, thus facilitating the analysis of individual cellular features and a deeper understanding of cellular functions. Nonetheless, the rapid evolution of high throughput single-cell "omics" tools has created the need for effective hypothesis verification strategies. Particularly, this issue could be addressed by coupling cell engineering techniques with single-cell sequencing. This approach has been successfully employed to gain further insights into disease pathogenesis and the dynamics of differentiation trajectories. Therefore, this review will discuss the current status of cell engineering toolkits and their contributions to single-cell and genome-wide data collection and analyses.

Cooperative Interaction between Acid and Copper Resistance in Escherichia coli

  • Kim, Yeeun;Lee, Seohyeon;Park, Kyungah;Yoon, Hyunjin
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.602-611
    • /
    • 2022
  • The persistence of pathogenic Escherichia coli under acidic conditions poses a serious risk to food safety, especially in acidic foods such as kimchi. To identify the bacterial factors required for acid resistance, transcriptomic analysis was conducted on an acid-resistant enterotoxigenic E. coli strain and the genes with significant changes in their expression under acidic pH were selected as putative resistance factors against acid stress. These genes included those associated with a glutamate-dependent acid resistance (GDAR) system and copper resistance. E. coli strains lacking GadA, GadB, or YbaST, the components of the GDAR system, exhibited significantly attenuated growth and survival under acidic stress conditions. Accordantly, the inhibition of the GDAR system by 3-mercaptopropionic acid and aminooxyacetic acid abolished bacterial adaptation and survival under acidic conditions, indicating the indispensable role of a GDAR system in acid resistance. Intriguingly, the lack of cueR encoding a transcriptional regulator for copper resistance genes markedly impaired bacterial resistance to acid stress as well as copper. Conversely, the absence of YbaST severely compromised bacterial resistance against copper, suggesting an interplay between acid and copper resistance. These results suggest that a GDAR system can be a promising target for developing control measures to prevent E. coli resistance to acid and copper treatments.