• Title/Summary/Keyword: Transcriptomic

Search Result 132, Processing Time 0.028 seconds

Transcriptomic Insights into Abies koreana Drought Tolerance Conferred by Aureobasidium pullulans AK10

  • Jungwook Park;Mohamed Mannaa;Gil Han;Hyejung Jung;Hyo Seong Jeon;Jin-Cheol Kim;Ae Ran Park;Young-Su Seo
    • The Plant Pathology Journal
    • /
    • v.40 no.1
    • /
    • pp.30-39
    • /
    • 2024
  • The conservation of the endangered Korean fir, Abies koreana, is of critical ecological importance. In our previous study, a yeast-like fungus identified as Aureobasidium pullulans AK10, was isolated and shown to enhance drought tolerance in A. koreana seedlings. In this study, the effectiveness of Au. pullulans AK10 treatment in enhancing drought tolerance in A. koreana was confirmed. Furthermore, using transcriptome analysis, we compared A. koreana seedlings treated with Au. pullulans AK10 to untreated controls under drought conditions to elucidate the molecular responses involved in increased drought tolerance. Our findings revealed a predominance of downregulated genes in the treated seedlings, suggesting a strategic reallocation of resources to enhance stress defense. Further exploration of enriched Kyoto Encyclopedia of Genes and Genomes pathways and protein-protein interaction networks revealed significant alterations in functional systems known to fortify drought tolerance, including the terpenoid backbone biosynthesis, calcium signaling pathway, pyruvate metabolism, brassinosteroid biosynthesis, and, crucially, flavonoid biosynthesis, renowned for enhancing plant drought resistance. These findings deepen our comprehension of how AK10 biostimulation enhances the resilience of A. koreana to drought stress, marking a substantial advancement in the effort to conserve this endangered tree species through environmentally sustainable treatment.

CDKN2 expression is a potential biomarker for T cell exhaustion in hepatocellular carcinoma

  • Shibo Wei;Yan Zhang;Baeki E. Kang;Wonyoung Park;He Guo;Seungyoon Nam;Jong-Sun Kang;Jee-Heon Jeong;Yunju Jo;Dongryeol Ryu;Yikun Jiang;Ki-Tae Ha
    • BMB Reports
    • /
    • v.57 no.6
    • /
    • pp.287-292
    • /
    • 2024
  • Hepatocellular Carcinoma (HCC), the predominant primary hepatic malignancy, is the prime contributor to mortality. Despite the availability of multiple surgical interventions, patient outcomes remain suboptimal. Immunotherapies have emerged as effective strategies for HCC treatment with multiple clinical advantages. However, their curative efficacy is not always satisfactory, limited by the dysfunctional T cell status. Thus, there is a pressing need to discover novel potential biomarkers indicative of T cell exhaustion (Tex) for personalized immunotherapies. One promising target is Cyclin-dependent kinase inhibitor 2 (CDKN2) gene, a key cell cycle regulator with aberrant expression in HCC. However, its specific involvement remains unclear. Herein, we assessed the potential of CDKN2 expression as a promising biomarker for HCC progression, particularly for exhausted T cells. Our transcriptome analysis of CDKN2 in HCC revealed its significant role involving in HCC development. Remarkably, single-cell transcriptomic analysis revealed a notable correlation between CDKN2 expression, particularly CDKN2A, and Tex markers, which was further validated by a human cohort study using human HCC tissue microarray, highlighting CDKN2 expression as a potential biomarker for Tex within the intricate landscape of HCC progression. These findings provide novel perspectives that hold promise for addressing the unmet therapeutic need within HCC treatment.

Identification of the mechanism for dehalorespiration of monofluoroacetate in the phylum Synergistota

  • Lex E. X. Leong;Stuart E. Denman;Seungha Kang;Stanislas Mondot;Philip Hugenholtz;Chris S. McSweeney
    • Animal Bioscience
    • /
    • v.37 no.2_spc
    • /
    • pp.396-403
    • /
    • 2024
  • Objective: Monofluoroacetate (MFA) is a potent toxin that blocks ATP production via the Krebs cycle and causes acute toxicity in ruminants consuming MFA-containing plants. The rumen bacterium, Cloacibacillus porcorum strain MFA1 belongs to the phylum Synergistota and can produce fluoride and acetate from MFA as the end-products of dehalorespiration. The aim of this study was to identify the genomic basis for the metabolism of MFA by this bacterium. Methods: A draft genome sequence for C. porcorum strain MFA1 was assembled and quantitative transcriptomic analysis was performed thus highlighting a candidate operon encoding four proteins that are responsible for the carbon-fluorine bond cleavage. Comparative genome analysis of this operon was undertaken with three other species of closely related Synergistota bacteria. Results: Two of the genes in this operon are related to the substrate-binding components of the glycine reductase protein B (GrdB) complex. Glycine shares a similar structure to MFA suggesting a role for these proteins in binding MFA. The remaining two genes in the operon, an antiporter family protein and an oxidoreductase belonging to the radical S-adenosyl methionine superfamily, are hypothesised to transport and activate the GrdB-like protein respectively. Similar operons were identified in a small number of other Synergistota bacteria including type strains of Cloacibacillus porcorum, C. evryensis, and Pyramidobacter piscolens, suggesting lateral transfer of the operon as these genera belong to separate families. We confirmed that all three species can degrade MFA, however, substrate degradation in P. piscolens was notably reduced compared to Cloacibacillus isolates possibly reflecting the loss of the oxidoreductase and antiporter in the P. piscolens operon. Conclusion: Identification of this unusual anaerobic fluoroacetate metabolism extends the known substrates for dehalorespiration and indicates the potential for substrate plasticity in amino acid-reducing enzymes to include xenobiotics.

Analysis of the mechanism of fibrauretine alleviating Alzheimer's disease based on transcriptomics and proteomics

  • Lu Han;Weijia Chen;Ying Zong;Yan Zhao;Jianming Li;Zhongmei He;Rui Du
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.4
    • /
    • pp.361-377
    • /
    • 2024
  • The dried rattan stem of the Fibraurea Recisa Pierre plant contains the active ingredient known as fibrauretine (FN). Although it greatly affects Alzheimer's disease (AD), the mechanism of their effects still remains unclear. Proteomics and transcriptomics analysis methods were used in this study to determine the mechanism of FN in the treatment of AD. AD model is used through bilateral hippocampal injection of Aβ1-40. After successful modeling, FN was given for 30 days. The results showed that FN could improve the cognitive dysfunction of AD model rats, reduce the expression of AE and P-Tau, increase the content of acetylcholine and reduce the activity of acetylcholinesterase. The Kyoto Encyclopedia of Genes and Genomes enriched differentially expressed genes and proteins are involved in signaling pathways including metabolic pathway, AD, pathway in cancer, PI3K-AKT signaling pathway, and cAMP signaling pathway. Transcriptomics and proteomics sequencing resulted in 19 differentially expressed genes and proteins. Finally, in contrast to the model group, after FN treatment, the protein expressions and genes associated with the PI3K-AKT pathway were significantly improved in RT-qPCR and Western blot and assays. This is consistent with the findings of transcriptomic and proteomic analyses. Our study found that, FN may improve some symptoms of AD model rats through PI3K-AKT signaling pathway.

Recognition of Transmembrane Protein 39A as a Tumor-Specific Marker in Brain Tumor

  • Park, Jisoo;Lee, Hyunji;Tran, Quangdon;Mun, Kisun;Kim, Dohoon;Hong, Youngeun;Kwon, So Hee;Brazil, Derek;Park, Jongsun;Kim, Seon-Hwan
    • Toxicological Research
    • /
    • v.33 no.1
    • /
    • pp.63-69
    • /
    • 2017
  • Transmembrane protein 39A (TMEM39A) belongs to the TMEM39 family. TMEM39A gene is a susceptibility locus for multiple sclerosis. In addition, TMEM39A seems to be implicated in systemic lupus erythematosus. However, any possible involvement of TMEM39A in cancer remains largely unknown. In the present report, we provide evidence that TMEM39A may play a role in brain tumors. Western blotting using an anti-TMEM39A antibody indicated that TMEM39A was overexpressed in glioblastoma cell lines, including U87-MG and U251-MG. Deep-sequencing transcriptomic profiling of U87-MG and U251-MG cells revealed that TMEM39A transcripts were upregulated in such cells compared with those of the cerebral cortex. Confocal microscopic analysis of U251-MG cells stained with anti-TMEM39A antibody showed that TMEM39A was located in dot-like structures lying close to the nucleus. TMEM39A probably located to mitochondria or to endosomes. Immunohistochemical analysis of glioma tissue specimens indicated that TMEM39A was markedly upregulated in such samples. Bioinformatic analysis of the Rembrandt knowledge base also supported upregulation of TMEM39A mRNA levels in glioma patients. Together, the results afford strong evidence that TMEM39A is upregulated in glioma cell lines and glioma tissue specimens. Therefore, TMEM39A may serve as a novel diagnostic marker of, and a therapeutic target for, gliomas and other cancers.

Expressed sequence tag analysis of Meretrix lusoria (Veneridae) in Korea (한국산 백합 (Meretrix lusoria) 의 전사체 분석)

  • Kang, Jung-Ha;Jeong, Ji Eun;Kim, Bong Seok;An, Chel-Min;Kang, Hyun-Sook;Kang, Se-Won;Hwang, Hee Ju;Han, Yeon Soo;Chae, Sung-Hwa;Ko, Hyun-Sook;Lee, Jun-Sang;Lee, Yong Seok
    • The Korean Journal of Malacology
    • /
    • v.28 no.4
    • /
    • pp.377-384
    • /
    • 2012
  • The importance of biological resources has been gradually increasing, and mollusks have been utilized as main fishery resources in terrestrial ecosystems. But little is known about genomic and transcriptional analysis in mollusks. This is the first report on the transcriptomic profile of Meretrix lusoria. In this study, we constructed cDNA library and determined 542 of distinct EST sequences composed of 284 singletons and 95 contigs. At first, we identified 180 of EST sequences that have significant hits on protein sequences of the exclusive Mollusks database through BLASTX program and 343 of EST sequences that have significant hits on NCBI NR database. We also found that 211 of putative sequences through local BLAST (blastx, E < e-10) search against KOG database were classified into 16 functional categories. Some kinds of immune response related genes encoding allograft inflammatory factor 1 (AIF-1), B-cell translocation gene 1 (BTG1), C-type lectin A, thioester-containing protein and 26S proteasome regulatory complex were identified. To determine phylogenetic relationship, we identified partial sequences of four genes (COX1, COX2, 12S rRNA and NADH dehydrogenase) that significantly matched with the mitochondrial genomes of 3 species-Ml (Meretrix lusoria), Mp (Meretrix petechialis) and Mm (Meretrix meretrix). As a result, we found that there was a little bit of a difference between sequences of Korean isolates and other known isolates. This study will be useful to develop breeding technology and might also be helpful to establish a classification system.

Transcriptomic analysis of 'Campbell Early' and 'Muscat Bailey A' grapevine shoots exposed to freezing cold stress (영하의 저온에 노출된 'Campbell Early'와 'Muscat Bailey A' 포도나무 신초의 전사체 비교)

  • Kim, Seon Ae;Yun, Hae Keun
    • Journal of Plant Biotechnology
    • /
    • v.43 no.2
    • /
    • pp.204-212
    • /
    • 2016
  • To understand the responses of grapevines in response to cold stress causing the limited growth and development, differentially expressed genes (DEGs) were screened through transcriptome analysis of shoots from 2 grapevine cultivars ('Campbell Early' and 'Muscat Baily A') kept at -$2^{\circ}C$ for 4 days. In gene ontology analysis of DEGs from 'Campbell Early', there were 17,424 clones related with biological process, 28,954 with cellular component, and 6,972 with molecular function genes in response to freezing temperature. The major induced genes included dehydrin xero 1, K-box region and MADS-box transcription factor family protein, and MYB domain protein 36, and inhibited genes included light-harvesting chlorophyll B-binding protein 3, FASCICLIN-like arabinoogalactan 9, and pectin methylesterase 61 in 'Campbell Early' grapevines. In gene ontology analysis of DEGs from 'Muscat Baily A', there were 1,157 clones related with biological process, 1,350 with cellular component, and 431 with molecular function gene. The major induced genes of 'Muscat Baily A' included NB-ARC domain-containing disease resistance protein, fatty acid hydrozylase superfamily, and isopentenyltransferase 3, and inhibited genes included binding, IAP-like protein 1, and pentatricopeptide repeat superfamily protein. All major DEGs were shown to be expressed differentially by freezing temperature in real time-PCR analysis. Protein domain analysis using InterPro Scan revealed that ubiquitin-protein ligase was redundant in both tested grapevines. Transcriptome profile of shoots exposed to cold can provide new insights into the molecular basis of tolerance to low-temperature in grapevines, and can be used as resources for development new grapevines tolerant to coldness.

Coordinated alteration of mRNA-microRNA transcriptomes associated with exosomes and fatty acid metabolism in adipose tissue and skeletal muscle in grazing cattle

  • Muroya, Susumu;Ogasawara, Hideki;Nohara, Kana;Oe, Mika;Ojima, Koichi;Hojito, Masayuki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1824-1836
    • /
    • 2020
  • Objective: On the hypothesis that grazing of cattle prompts organs to secrete or internalize circulating microRNAs (c-miRNAs) in parallel with changes in energy metabolism, we aimed to clarify biological events in adipose, skeletal muscle, and liver tissues in grazing Japanese Shorthorn (JSH) steers by a transcriptomic approach. Methods: The subcutaneous fat (SCF), biceps femoris muscle (BFM), and liver in JSH steers after three months of grazing or housing were analyzed using microarray and quantitative polymerase chain reaction (qPCR), followed by gene ontology (GO) and functional annotation analyses. Results: The results of transcriptomics indicated that SCF was highly responsive to grazing compared to BFM and liver tissues. The 'Exosome', 'Carbohydrate metabolism' and 'Lipid metabolism' were extracted as the relevant GO terms in SCF and BFM, and/or liver from the >1.5-fold-altered mRNAs in grazing steers. The qPCR analyses showed a trend of upregulated gene expression related to exosome secretion and internalization (charged multivesicular body protein 4A, vacuolar protein sorting-associated protein 4B, vesicle associated membrane protein 7, caveolin 1) in the BFM and SCF, as well as upregulation of lipolysis-associated mRNAs (carnitine palmitoyltransferase 1A, hormone-sensitive lipase, perilipin 1, adipose triglyceride lipase, fatty acid binding protein 4) and most of the microRNAs (miRNAs) in SCF. Moreover, gene expression related to fatty acid uptake and inter-organ signaling (solute carrier family 27 member 4 and angiopoietin-like 4) was upregulated in BFM, suggesting activation of SCF-BFM organ crosstalk for energy metabolism. Meanwhile, expression of plasma exosomal miR-16a, miR-19b, miR-21-5p, and miR-142-5p was reduced. According to bioinformatic analyses, the c-miRNA target genes are associated with the terms 'Endosome', 'Caveola', 'Endocytosis', 'Carbohydrate metabolism', and with pathways related to environmental information processing and the endocrine system. Conclusion: Exosome and fatty acid metabolism-related gene expression was altered in SCF of grazing cattle, which could be regulated by miRNA such as miR-142-5p. These changes occurred coordinately in both the SCF and BFM, suggesting involvement of exosome in the SCF-BFM organ crosstalk to modulate energy metabolism.

Phenotypic and Transcriptomic Analysis of Nicotiana benthamiana Expressing Cucumber mosaic virus 2b gene (오이모자이크바이러스 2b 유전자 발현 담배의 형태 및 전사체 분석)

  • Sohn, Seong-Han;Kim, Yoon-Hee;Ahn, Yul-Kyun;Kim, Do-Sun;Won, So-Yoon;Kim, Jung-Sun;Choi, Hong-Soo
    • Research in Plant Disease
    • /
    • v.21 no.3
    • /
    • pp.186-192
    • /
    • 2015
  • Cucumber mosaic virus possesses 2b gene known as a suppressor of post-transcriptional gene silencing (PTGS). To investigate its function and effect in plant, transgenic Nicotiana benethamiana expressing 2b gene was developed and analyzed in phenotypic characteristics and differential gene expression (DEG) comparing with wild-type. Eight lines of transgenic plants ($T_0$) were obtained with difficulty and showed severe deformed phenotypes in leaves, flowers, petioles and etc. Moreover, transgenic plants were hardly able to set seeds, but small amounts of seeds were barely produced in some of transgene-hemizygous plants. DEG analysis showed that transgenic plant ectopically accumulated diverse RNA transcripts at higher levels than wild-type probably due to the disturbance in RNA metabolism, especially of RNA decay, caused by 2b-mediated inhibition of PTGS. These ectopic accumulations of RNAs disrupt protein and RNA homeostasis and then subsequently lead to abnormal phenotypes of transgenic plants.

Expression of Heat Shock Protein and Antioxidant Genes in Rice Leaf Under Heat Stress

  • Lee, Dong-Gi;Ahsan, Nagib;Kim, Yong-Goo;Kim, Kyung-Hee;Lee, Sang-Hoon;Lee, Ki-Won;Rahman, Md. Atikur;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.3
    • /
    • pp.159-166
    • /
    • 2013
  • We have previously investigated the proteome changes of rice leaves under heat stress (Lee et al. in Proteomics 2007a, 7:3369-3383), wherein a group of antioxidant proteins and heat shock proteins (HSPs) were found to be regulated differently. The present study focuses on the biochemical changes and gene expression profiles of heat shock protein and antioxidant genes in rice leaves in response to heat stress ($42^{\circ}C$) during a wide range of exposure times. The results show that hydrogen peroxide and proline contents increased significantly, suggesting an oxidative burst and osmotic imbalance under heat stress. The mRNA levels of chaperone 60, HSP70, HSP100, chloroplastic HSP26, and mitochondrial small HSP responded rapidly and showed maximum expression after 0.5 or 2 h under heat stress. Transcript levels of ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and Cu-Zn superoxide dismutase (Cu-Zn SOD) showed a rapid and marked accumulation upon heat stress. While prolonged exposure to heat stress resulted in increased transcript levels of monodehydroascorbate reductase, peroxidase, glyoxalase 1, glutathione reductase, thioredoxin peroxidase, 2-Cysteine peroxiredoxin, and nucleoside diphosphate kinase 1, while the transcription of catalase was suppressed. Consistent with their changes in gene expression, the enzyme activities of APX and DHAR also increased significantly following exposure to heat stress. These results suggest that oxidative stress is usually caused by heat stress, and plants apply complex HSP- and antioxidant-mediated defense mechanisms to cope with heat stress.