• Title/Summary/Keyword: Transcriptional activator

Search Result 135, Processing Time 0.021 seconds

Experimental Intervention to Reverse Inhibition of Nitric Oxide Production by Cyclosporin A in Rat Aortic Smooth Muscle Cells (혈관평활근세포에서 Cyclosporin A에 의한 Nitric Oxide 생성억제를 길항하는 실험적 중재법)

  • Kim, In-Kyeom
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.211-219
    • /
    • 1996
  • The inhibitory effect of cyclosporin A (CsA) on nitric oxide production is not related to the immunosuppressive action of the drug, but to the renal toxicity and arterial hyper-tension. In this study the experimental interventions to reverse the inhibition of nitric oxide production by cyclosporin A in rat aortic smooth muscle cells were examined. CsA inhibited the accumulation of nitrite, the stable end product of nitric oxide, in culture media in a concentration $(0.1{\sim}100{\mu}g/ml)-dependent$ manner. The inhibitory effect of CsA on nitrite accumulation were not antagonized by arginine (10 mM), a substrate of nitric oxide synthase, nor by calcium ionophore A23187 $(7{\mu}M)$. Forskolin, an activator of adenylate cyclase, which enhanced iNOS induction at transcriptional level, completely reversed the inhibitory action of CsA on nitrite accumulation. However, PMA (2 nM) and PDB (50 nM), PKC activators, increased the inhibitory action of CsA on nitrite accumulalion. From these results, it is suggested that cyclic AMP-elevating agents may be candidates of therapeutic agents in prevention and treatment of renal toxicity and arterial hypertension induced by CsA. Among conventional antihypertensive drugs, calcium channel blockers and ${\alpha}-blockers$ are preferred to ${\beta}-blockers$.

  • PDF

c-myc Expression: Keep the Noise Down!

  • Chung, Hye-Jung;Levens, David
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.157-166
    • /
    • 2005
  • The c-myc proto-oncogene encodes a nuclear protein that is deregulated and/or mutated in most human cancers. Acting primarily as an activator and sometimes as a repressor, MYC protein controls the synthesis of up to 10-15% of genes. The key MYC targets contributing to oncogenesis are incompletely enumerated and it is not known whether pathology arises from the expression of physiologic targets at abnormal levels or from the pathologic response of new target genes that are not normally regulated by MYC. Regardless of which, available evidence indicates that the level of MYC expression is an important determinant of MYC biology. The c-myc promoter has architectural and functional features that contribute to uniform expression and help to prevent or mitigate conditions that might otherwise create noisy expression. Those features include the use of an expanded proximal promoter, the averaging of input from dozens of transcription factors, and real-time feedback using the supercoil-deformable Far UpStream Element (FUSE) as physical sensor of ongoing transcriptional activity, and the FUSE binding protein (FBP) as well as the FBP interacting repressor (FIR) as effectors to enforce normal transcription from the c-myc promoter.

Rpn10p is a Receptor for Ubiquitinated Gcn4p in Proteasomal Proteolysis

  • Seong, Ki Moon;Baek, Je-Hyun;Ahn, Byung-Yoon;Yu, Myeong-Hee;Kim, Joon
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.194-199
    • /
    • 2007
  • GCN4 is a typical eukaryotic transcriptional activator that is implicated in the expression of many genes involved in amino acids and purine biosyntheses under stress conditions. It is degraded by 26S proteasomes following ubiquitination. However, the immediate receptor for ubiquitinated Gcn4p has not yet been identified. We investigated whether ubiquitinated Gcn4p binds directly to Rpn10p as the ubiquitinated substrate receptor of the 26S proteasome. We found that the level of Gcn4p increased in cells deleted for Rpn10p but not in cells deleted for RAD23 and DSK2, the other ubiquitinated substrate receptors and, unlike Rpn10p, neither of these proteins recognized ubiquitinated Gcn4p. These results suggest that Rpn10p is the receptor that binds the polyubiquitin chain during ubiquitin-dependent proteolysis of Gcn4p.

Anti-cancer Effects of Luteolin and Its Novel Mechanism in HepG2 Hepatocarcinoma Cell (루테올린의 간암세포 성장 억제효능 및 새로운 작용기전)

  • Hwang, Jin-Taek;Yang, Hye-Jung
    • KSBB Journal
    • /
    • v.25 no.6
    • /
    • pp.507-512
    • /
    • 2010
  • In this study, we investigated the ability of luteolin, a plant derived flavonoid on hepatocarcinoma cell growth using HepG2 cell culture system. We found that luteolin increased the Smac/DIABLO releases, a mitochondrial protein that potentiates apoptosis. Luteolin also induced either transcriptional activity or expression of PPAR-gamma, a target of cancer growth that PPAR-gamma agonist sensitizes to apoptosis in certain cancer types. To find the possible upstream target molecules of PPAR-gamma activated by luteolin treatment, we used compound C, a specific inhibitor of AMP-activated protein kinase. Pre-treatment of Compound C significantly restored the activation or expression of PPAR-gamma stimulated by luteolin. This result indicated that AMPK signaling might be involved in the activation or expression of PPAR-gamma signaling pathway stimulated by luteolin. Moreover, we also found that luteolin inhibited the insulin-stimulated Akt phosphorylation as well as AICAR, a specific AMPK activator. These results propose that luteolin significantly induces cancer cell death through modulating survival signal pathways such as PPAR-gamma and Akt. AMPK signaling pathway may be an upstream regulator for survival signal pathways such as PPAR-gamma and Akt stimulated by luteolin.

Clustered LAG-1 binding sites in lag-1/CSL are involved in regulating lag-1 expression during lin-12/Notch-dependent cell-fate specification

  • Choi, Vit Na;Park, Seong Kyun;Hwang, Byung Joon
    • BMB Reports
    • /
    • v.46 no.4
    • /
    • pp.219-224
    • /
    • 2013
  • The cell-fate specification of the anchor cell (AC) and a ventral uterine precursor cell (VU) in Caenorhabditis elegans is initiated by a stochastic interaction between LIN-12/Notch receptor and LAG-2/Delta ligand in two neighboring Z1.ppp and Z4.aaa cells. Both cells express lin-12 and lag-2 before specification, and a small difference in LIN-12 activity leads to the exclusive expressions of lin-12 in VU and lag-2 in the AC, through a feedback mechanism of unknown nature. Here we show that the expression pattern of lag-1/CSL, a transcriptional repressor itself that turns into an activator upon binding of the intracellular domain of Notch, overlaps with that of lin-12. Site-directed mutagenesis of LAG-1 binding sites in lag-1 maintains its expression in the AC, and eliminates it in the VU. Thus, AC/VU cell-fate specification appears to involve direct regulation of lag-1 expression by the LAG-1 protein, activating its transcription in VU cells, but repressing it in the AC.

Ecklonia cava Extract Containing Dieckol Suppresses RANKL-Induced Osteoclastogenesis via MAP Kinase/NF-κB Pathway Inhibition and Heme Oxygenase-1 Induction

  • Kim, Seonyoung;Kang, Seok-Seong;Choi, Soo-Im;Kim, Gun-Hee;Imm, Jee-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.11-20
    • /
    • 2019
  • Ecklonia cava, an edible marine brown alga (Laminariaceae), is a rich source of bioactive compounds such as fucoidan and phlorotannins. Ecklonia cava extract (ECE) was prepared using 70% ethanol extraction and ECE contained 67% and 10.6% of total phlorotannins and dieckol, respectively. ECE treatment significantly inhibited receptor activator of nuclear $factor-{\kappa}B$ ligand (RANKL)-induced osteoclast differentiation of RAW 264.7 cells and pit formation in bone resorption assay (p <0.05). Moreover, it suppressed RANKL-induced $NF-{\kappa}B$ and mitogen-activated protein kinase signaling in a dose dependent manner. Downregulated osteoclast-specific gene (tartrate-resistant acid phosphatase, cathepsin K, and matrix metalloproteinase-9) expression and osteoclast proliferative transcriptional factors (nuclear factor of activated T cells-1 and c-fos) confirmed ECE-mediated suppression of osteoclastogenesis. ECE treatment ($100{\mu}g/ml$) increased heme oxygenase-1 expression by 2.5-fold and decreased intercellular reactive oxygen species production during osteoclastogenesis. The effective inhibition of RANKL-stimulated osteoclast differentiation and oxidative stress by ECE suggest that ECE has therapeutic potential in alleviating osteoclast-associated disorders.

Defect of SIRT1-FoxO3a axis is associated with the production of reactive oxygen species during protein kinase CK2 downregulation-mediated cellular senescence and nematode aging

  • Ham, Hye-Jun;Park, Jeong-Woo;Bae, Young-Seuk
    • BMB Reports
    • /
    • v.52 no.4
    • /
    • pp.265-270
    • /
    • 2019
  • We investigated whether SIRT1 is associated with reactive oxygen species (ROS) accumulation during CK2 downregulation-mediated senescence. SIRT1 overexpression suppressed ROS accumulation, reduced transcription of FoxO3a target genes, and nuclear export and acetylation of FoxO3a, which were induced by CK2 downregulation in HCT116 and MCF-7 cells. Conversely, overexpression of a dominant-negative mutant SIRT1 (H363Y) counteracted decreased ROS levels, increased transcriptional activity of FoxO3a, and increased nuclear import and decreased acetylation of FoxO3a, which were induced by CK2 upregulation. CK2 downregulation destabilized SIRT1 protein via an ubiquitin-proteasome pathway in human cells, whereas CK2 overexpression reduced ubiquitination of SIRT1. Finally, the SIRT1 activator resveratrol attenuated the accumulation of ROS and lipofuscin as well as lifespan shortening, and reduced expression of the DAF-16 target gene sod-3, which were induced by CK2 downregulation in nematodes. Altogether, this study demonstrates that inactivation of the SIRT1-FoxO3a axis, at least in part, is involved in ROS generation during CK2 downregulation-mediated cellular senescence and nematode aging.

Activation of Nrf2 by sulfuretin stimulates chondrocyte differentiation and increases bone lengths in zebrafish

  • Seo-Hyuk Chang;Hoi-Khoanh Giong;Da-Young Kim;Suji Kim;Seungjun Oh;Ui Jeong Yun;Jeong-Soo Lee;Kye Won Park
    • BMB Reports
    • /
    • v.56 no.9
    • /
    • pp.496-501
    • /
    • 2023
  • Elongation of most bones occur at the growth plate through endochondral ossification in postnatal mammals. The maturation of chondrocyte is a crucial factor in longitudinal bone growth, which is regulated by a complex network of paracrine and endocrine signaling pathways. Here, we show that a phytochemical sulfuretin can stimulate hypertrophic chondrocyte differentiation in vitro and in vivo. We found that sulfuretin stabilized nuclear factor (erythroid-derived 2)-like 2 (Nrf2), stimulated its transcriptional activity, and induced expression of its target genes. Sulfuretin treatment resulted in an increase in body length of zebrafish larvae and induced the expression of chondrocyte markers. Consistently, a clinically available Nrf2 activator, dimethyl fumarate (DMF), induced the expression of hypertrophic chondrocyte markers and increased the body length of zebrafish. Importantly, we found that chondrocyte gene expression in cell culture and skeletal growth in zebrafish stimulated by sulfuretin were significantly abrogated by Nrf2 depletion, suggesting that such stimulatory effects of sulfuretin were dependent on Nrf2, at least in part. Taken together, these data show that sulfuretin has a potential use as supporting ingredients for enhancing bone growth.

Dimethyl α-Ketoglutarate Promotes the Synthesis of Collagen and Inhibits Metalloproteinases in HaCaT Cells

  • Bo-Yeong Yu;Da-Hae Eom;Hyun Woo Kim;Yong-Joo Jeong;Young-Sam Keum
    • Biomolecules & Therapeutics
    • /
    • v.32 no.2
    • /
    • pp.240-248
    • /
    • 2024
  • We observed that treatment with dimethyl α-ketoglutarate (DMK) increased the amount of intracellular α-ketoglutarate significantly more than that of α-ketoglutarate in HaCaT cells. DMK also increased the level of intracellular 4-hydroxyproline and promoted the production of collagen in HaCaT cells. In addition, DMK decreased the production of collagenase and elastase and down-regulated the expression of selected matrix metalloproteinases (MMPs), such as MMP-1, MMP-9, MMP-10, and MMP-12, via transcriptional inhibition. The inhibition of MMPs by DMK was mediated by the suppression of the IL-1 signaling cascade, leading to the attenuation of ERK1/2 phosphorylation and AP-1 transactivation. Our study results illustrate that DMK, an alkylated derivative of α-ketoglutarate, increased the level of 4-hydroxyproline, promoted the production of collagen, and inhibited the expression of selected MMPs by affecting the IL-1 cascade and AP-1 transactivation in HaCaT cells. The results suggest that DMK might be useful as an anti-wrinkle ingredient.

Study of Hedyotis Diffusa Methanol Extract on Anti-tumoral Effect and Mechanism (백화사설초(白花蛇舌草) 메탄올 추출물(抽出物)의 항종양(抗腫瘍) 효과(效果) 및 항암(抗癌) 기전(機轉)에 관(關)한 연구(硏究))

  • No, Hoon-Jeong;Moon, Gu;Moon, Seok-Jae;Won, Jin-Hee;Moon, Young-Ho;Park, Rae-Gil
    • THE JOURNAL OF KOREAN ORIENTAL ONCOLOGY
    • /
    • v.6 no.1
    • /
    • pp.81-97
    • /
    • 2000
  • Objectives: This experimental study was carried out to evaluate the effects of aqueous and methanol extracts of Hedyotis diffusa which has long been used for cancer treatment in oriental medicines on the induction of apoptotic cell death in human lymphoid leukemia cell line, HL-60. Methods: Cells were treated with various concentrations (200 to $0.4{\mu}g$) and periods (6 to 30 hr) of $H_2O$ and methanol extracts of Hedyotis diffusa. Then, cells were tested for viability by MTT assay. Cells wrere treated with $200{\mu}g/ml$ of methanol extract fork various periods. Genomic DNA was isolated, separated, on 1.5% agarose gels, stained with ethidium bromide and visualized under UV light. Cells were treated with $200{\mu}g/ml$ of each extract for 16 hr. Then, cells were treated with Hoechst dye 33342 and observed by fluorescence microscopy. Cells were treated with various doses of each for 12 hr and $100{\mu}g/ml$ of methanol extract for various periods. Lysate from the cells used to measure the activity of Caspase-1 and-3 proteases by using fluorogenic peptide substrates including acetyl-YVAD-AMC and acetyl-DEVD-AMC, respectively. Cells were treated with $200{\mu}g/ml$ of each extract for various periods. Cell lysates were immunoprecipated with anti-JNKl antibodies. The immune complex was reacted with $32^p-ATP$ and c-Jun as a substrate. The phosphotransferase activity of JNKI was measured by using PhosphoImage analyzer (Fuji Co., Japan). Nuclear extracts were isolated and incubated with oligonucleotide probe of $NF-{\kappa}B$. Transcriptional activation of ${\kappa}B$ was measured by using EMSA and visualized by PhosphoImage analyzer (Fuji Co, Japan). Cell lysates were prepared and analyzed by Western blotting with anti-Bc12 antibodies and anti-Bax antibodies. Cells were pretreated with various doses of methanol extract for 2 hr. Then, the extract was removed by centrifugation. Cells were resuspended with RPMI-1640 media containing 0.3% agarose, 10% FBS, overlayred onto bottom layer agarose and incubated at $CO_2$ incubator for 6 days. The number of colony was counted under light microscopy ($\time100$). Results: The death of HL-60 cells was markedly induced by the addition of methanol extract of Hedyotis diffusa in a dose and time-dependent manners. The apoptotic characteristic ladder pattern of DNA strand break was observed in death of HL-60 cells. In addition, it was shown nucleus chromatin condensation and fragmentation under Hoechst staining. Therefore, Hedyotis diffusa extract-induced death of HL-60 cells is mediated by apoptotic signaling processes. The activity of Caspase 3-like proteases remained in a basal level in HL-60 cells treated with aqueous extract of Hedyotis diffusa. However, it was markedly increased in HL-60 cells treated with methanol extract of Hedyotis diffusa. In addition, the phosphotransferase activity of JNKl was increased in HL-60 cells treated with methanol extract of Hedyotis diffusa. Furthermore, the activation of transcriptional activator, $NF-{\kappa}B$ was markedly induced by methanol extract of Hedyotis diffusa. Anti-apoptotic Bc12 was cleaved into 23Kda fragment by treatment of methanol extract of Hedyotis diffusa. However, expression of proapoptotic Bax protein was increased by treatment of methanol extract of Hedyotis diffusa in a time-dependent manner. Furthermore, methanol extract markedly inhibited the colony forming efficiency of HL-60 cells in semisolid agar culture. Conclusions: Above results suggest that methanol extract of Hedyotis diffusa induces the apoptotic death of human leukemic HL-60 cells via activations of Caspase-3 proteases, JNKI, transcriptional activator $NF-{\kappa}B$, In addition, our results also suggest that methanol extract of Hedyotis diffusa reduces the malignant potential of HL-60 cells via down regulation of colony forming effciency through cleavage of Bc12 as well as induction of Bax.

  • PDF