Browse > Article

Rpn10p is a Receptor for Ubiquitinated Gcn4p in Proteasomal Proteolysis  

Seong, Ki Moon (School of Life Sciences and Biotechnology, Korea University)
Baek, Je-Hyun (School of Life Sciences and Biotechnology, Korea University)
Ahn, Byung-Yoon (School of Life Sciences and Biotechnology, Korea University)
Yu, Myeong-Hee (Functional Proteomics Center, Korea Institute of Science and Technology)
Kim, Joon (School of Life Sciences and Biotechnology, Korea University)
Abstract
GCN4 is a typical eukaryotic transcriptional activator that is implicated in the expression of many genes involved in amino acids and purine biosyntheses under stress conditions. It is degraded by 26S proteasomes following ubiquitination. However, the immediate receptor for ubiquitinated Gcn4p has not yet been identified. We investigated whether ubiquitinated Gcn4p binds directly to Rpn10p as the ubiquitinated substrate receptor of the 26S proteasome. We found that the level of Gcn4p increased in cells deleted for Rpn10p but not in cells deleted for RAD23 and DSK2, the other ubiquitinated substrate receptors and, unlike Rpn10p, neither of these proteins recognized ubiquitinated Gcn4p. These results suggest that Rpn10p is the receptor that binds the polyubiquitin chain during ubiquitin-dependent proteolysis of Gcn4p.
Keywords
26S Proteasome; Gcn4p; Polyubiquitinated Substrate Receptors; Rpn10p;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 6  (Related Records In Web of Science)
연도 인용수 순위
1 Finley, D., Sadis, S., Monia, B. P., Boucher, P., Ecker, D. J., et al. (1994) Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant. Mol. Cell. Biol. 14, 5501-5509   DOI
2 Glickman, M. H., Rubin, D. M., Fried, V. A., and Finley, D. (1998) The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol. Cell. Biol. 18, 3149-3162   DOI
3 Hinnebusch, A. G. (2005) Translational regulation of GCN4 and the general amino acid control of yeast. Annu. Rev. Microbiol. 59, 407-450   DOI   ScienceOn
4 Hope, I. A. and Struhl, K. (1985) GCN4 protein, synthesized in vitro, binds HIS3 regulatory sequences: implications for general control of amino acid biosynthetic genes in yeast. Cell 43, 177-188   DOI   ScienceOn
5 Kominami, K., Okura, N., Kawamura, M., DeMartino, G. N., Slaughter, C. A., et al. (1997) Yeast counterparts of subunits S5a and p58 (S3) of the human 26S proteasome are encoded by two multicopy suppressors of nin1-1. Mol. Biol. Cell. 8, 171-187   DOI
6 Kornitzer, D., Raboy, B., Kulka, R. G., and Fink, G. R. (1994) Regulated degradation of the transcription factor Gcn4. EMBO J. 13, 6021-6030
7 Natarajan, K., Meyer, M. R., Jackson, B. M., Slade, D., Roberts, C., et al. (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol. Cell. Biol. 21, 4347-4368   DOI   ScienceOn
8 Pries, R., Bomeke, K., Irniger, S., Grundmann, O., and Braus, G. H. (2002) Amino acid-dependent Gcn4p stability regulation occurs exclusively in the yeast nucleus. Eukaryot. Cell 1, 663-672   DOI
9 Rao, H. and Sastry, A. (2002) Recognition of specific ubiquitin conjugates is important for the proteolytic functions of the ubiquitin-associated domain proteins Dsk2 and Rad23. J. Biol. Chem. 277, 11691-11695   DOI   ScienceOn
10 Sherman, F. (1991) Getting started with yeast. Methods Enzymol. 194, 3-21
11 Wilkinson, C. R., Seeger, M., Hartmann-Petersen, R., Stone, M., Wallace, M., et al. (2001) Proteins containing the UBA domain are able to bind to multi-ubiquitin chains. Nat. Cell. Biol. 3, 939-943   DOI   ScienceOn
12 Yang, R., Wek, S. A., and Wek, R. C. (2000) Glucose limitation induces GCN4 translation by activation of Gcn2 protein kinase. Mol. Cell. Biol. 20, 2706-2717   DOI   ScienceOn
13 Won, J., Chung, S. Y., Kim, S. B., Byun, B. H., Yoon, Y. S., et al. (2006) Dose-dependent UV stabilization of p53 in cultured human cells undergoing apoptosis is mediated by poly(ADPribosyl) ation. Mol. Cells 21, 218-223
14 Irniger, S. and Braus, G. H. (2003) Controlling transcription by destruction: the regulation of yeast Gcn4p stability. Curr. Genet. 44, 8-18   DOI   ScienceOn
15 Madura, K. (2004) Rad23 and Rpn10: perennial wallflowers join the melee. Trends Biochem. Sci. 29, 637-640   DOI
16 Chen, L. and Madura, K. (2002) Rad23 promotes the targeting of proteolytic substrates to the proteasome. Mol. Cell. Biol. 22, 4902-4913   DOI   ScienceOn
17 Fu, H., Sadis, S., Rubin, D. M., Glickman, M., van Nocker, S., et al. (1998) Multiubiquitin chain binding and protein degradation are mediated by distinct domains within the 26 S proteasome subunit Mcb1. J. Biol. Chem. 273, 1970-1981   DOI   ScienceOn
18 Chi, Y., Huddleston, M. J., Zhang, X., Young, R. A., Annan, R. S., et al. (2001) Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase. Genes Dev. 15, 1078-1092   DOI   ScienceOn
19 Hinnebusch, A. G. (1984) Evidence for translational regulation of the activator of general amino acid control in yeast. Proc. Natl. Acad. Sci. USA 81, 6442-6446
20 Penney, M., Wilkinson, C., Wallace, M., Javerzat, J. P., Ferrell, K., et al. (1998) The Pad1+ gene encodes a subunit of the 26 S proteasome in fission yeast. J. Biol. Chem. 273, 23938- 23945   DOI   ScienceOn
21 Elsasser, S., Chandler-Militello, D., Muller, B., Hanna, J., and Finley, D. (2004) Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J. Biol. Chem. 279, 26817-26822.   DOI   ScienceOn
22 Mayor, T., Lipford, J. R., Graumann, J., Smith, G. T., and Deshaies, R. J. (2005) Analysis of polyubiquitin conjugates reveals that the Rpn10 substrate receptor contributes to the turnover of multiple proteasome targets. Mol. Cell. Proteomics 4, 741-751   DOI   ScienceOn
23 Elsasser, S., Gali, R. R., Schwickart, M., Larsen, C. N., Leggett, D. S., et al. (2002) Proteasome subunit Rpn1 binds ubiquitinlike protein domains. Nat. Cell. Biol. 4, 725-730   DOI   ScienceOn
24 Xie, Y. and Varshavsky, A. (2002) UFD4 lacking the proteasome- binding region catalyses ubiquitination but is impaired in proteolysis. Nat. Cell. Biol. 4, 1003-1007   DOI   ScienceOn
25 Meimoun, A., Holtzman, T., Weissman, Z., McBride, H. J., Stillman, D. J., et al. (2000) Degradation of the transcription factor Gcn4 requires the kinase Pho85 and the SCF(CDC4) ubiquitin-ligase complex. Mol Biol Cell, 11, 915-927   DOI
26 Schwartz, A. L. and Ciechanover, A. (1999) The ubiquitinproteasome pathway and pathogenesis of human diseases. Annu. Rev. Med. 50, 57-74   DOI   ScienceOn
27 Shemer, R., Meimoun, A., Holtzman, T., and Kornitzer, D. (2002) Regulation of the transcription factor Gcn4 by Pho85 cyclin PCL5. Mol. Cell. Biol. 22, 5395-5404   DOI   ScienceOn
28 Elsasser, S. and Finley, D. (2005) Delivery of ubiquitinated substrates to protein-unfolding machines. Nat. Cell. Biol. 7, 742-749   DOI   ScienceOn
29 Puig, O., Caspary, F., Rigaut, G., Rutz, B., Bouveret, E., et al. (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24, 218-229   DOI   ScienceOn
30 Verma, R., Oania, R., Graumann, J., and Deshaies, R. J. (2004) Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 118, 99- 110   DOI   ScienceOn
31 Funakoshi, M., Sasaki, T., Nishimoto, T., and Kobayashi, H. (2002) Budding yeast Dsk2p is a polyubiquitin-binding protein that can interact with the proteasome. Proc. Natl. Acad. Sci. USA 99, 745-750
32 Engelberg, D., Klein, C., Martinetto, H., Struhl, K., and Karin, M. (1994) The UV response involving the Ras signaling pathway and AP-1 transcription factors is conserved between yeast and mammals. Cell 77, 381-390   DOI   ScienceOn
33 Lambertson, D., Chen, L., and Madura, K. (1999) Pleiotropic defects caused by loss of the proteasome-interacting factors Rad23 and Rpn10 of Saccharomyces cerevisiae. Genetics 153, 69-79
34 Saeki, Y., Saitoh, A., Toh-e, A., and Yokosawa, H. (2002) Ubiquitin- like proteins and Rpn10 play cooperative roles in ubiquitin- dependent proteolysis. Biochem. Biophys. Res. Commun. 293, 986-992   DOI   ScienceOn