Acknowledgement
Supported by : Korean Ministry of Science & Technology
References
- Chen, L. and Madura, K. (2002) Rad23 promotes the targeting of proteolytic substrates to the proteasome. Mol. Cell. Biol. 22, 4902-4913 https://doi.org/10.1128/MCB.22.13.4902-4913.2002
- Chi, Y., Huddleston, M. J., Zhang, X., Young, R. A., Annan, R. S., et al. (2001) Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase. Genes Dev. 15, 1078-1092 https://doi.org/10.1101/gad.867501
- Elsasser, S., Chandler-Militello, D., Muller, B., Hanna, J., and Finley, D. (2004) Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J. Biol. Chem. 279, 26817-26822. https://doi.org/10.1074/jbc.M404020200
- Elsasser, S. and Finley, D. (2005) Delivery of ubiquitinated substrates to protein-unfolding machines. Nat. Cell. Biol. 7, 742-749 https://doi.org/10.1038/ncb0805-742
- Elsasser, S., Gali, R. R., Schwickart, M., Larsen, C. N., Leggett, D. S., et al. (2002) Proteasome subunit Rpn1 binds ubiquitinlike protein domains. Nat. Cell. Biol. 4, 725-730 https://doi.org/10.1038/ncb845
- Engelberg, D., Klein, C., Martinetto, H., Struhl, K., and Karin, M. (1994) The UV response involving the Ras signaling pathway and AP-1 transcription factors is conserved between yeast and mammals. Cell 77, 381-390 https://doi.org/10.1016/0092-8674(94)90153-8
- Finley, D., Sadis, S., Monia, B. P., Boucher, P., Ecker, D. J., et al. (1994) Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant. Mol. Cell. Biol. 14, 5501-5509 https://doi.org/10.1128/MCB.14.8.5501
- Fu, H., Sadis, S., Rubin, D. M., Glickman, M., van Nocker, S., et al. (1998) Multiubiquitin chain binding and protein degradation are mediated by distinct domains within the 26 S proteasome subunit Mcb1. J. Biol. Chem. 273, 1970-1981 https://doi.org/10.1074/jbc.273.4.1970
- Funakoshi, M., Sasaki, T., Nishimoto, T., and Kobayashi, H. (2002) Budding yeast Dsk2p is a polyubiquitin-binding protein that can interact with the proteasome. Proc. Natl. Acad. Sci. USA 99, 745-750
- Glickman, M. H., Rubin, D. M., Fried, V. A., and Finley, D. (1998) The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol. Cell. Biol. 18, 3149-3162 https://doi.org/10.1128/MCB.18.6.3149
- Hinnebusch, A. G. (1984) Evidence for translational regulation of the activator of general amino acid control in yeast. Proc. Natl. Acad. Sci. USA 81, 6442-6446
- Hinnebusch, A. G. (2005) Translational regulation of GCN4 and the general amino acid control of yeast. Annu. Rev. Microbiol. 59, 407-450 https://doi.org/10.1146/annurev.micro.59.031805.133833
- Hope, I. A. and Struhl, K. (1985) GCN4 protein, synthesized in vitro, binds HIS3 regulatory sequences: implications for general control of amino acid biosynthetic genes in yeast. Cell 43, 177-188 https://doi.org/10.1016/0092-8674(85)90022-4
- Irniger, S. and Braus, G. H. (2003) Controlling transcription by destruction: the regulation of yeast Gcn4p stability. Curr. Genet. 44, 8-18 https://doi.org/10.1007/s00294-003-0422-3
- Kominami, K., Okura, N., Kawamura, M., DeMartino, G. N., Slaughter, C. A., et al. (1997) Yeast counterparts of subunits S5a and p58 (S3) of the human 26S proteasome are encoded by two multicopy suppressors of nin1-1. Mol. Biol. Cell. 8, 171-187 https://doi.org/10.1091/mbc.8.1.171
- Kornitzer, D., Raboy, B., Kulka, R. G., and Fink, G. R. (1994) Regulated degradation of the transcription factor Gcn4. EMBO J. 13, 6021-6030
- Lambertson, D., Chen, L., and Madura, K. (1999) Pleiotropic defects caused by loss of the proteasome-interacting factors Rad23 and Rpn10 of Saccharomyces cerevisiae. Genetics 153, 69-79
- Madura, K. (2004) Rad23 and Rpn10: perennial wallflowers join the melee. Trends Biochem. Sci. 29, 637-640 https://doi.org/10.1016/j.tibs.2004.10.008
- Mayor, T., Lipford, J. R., Graumann, J., Smith, G. T., and Deshaies, R. J. (2005) Analysis of polyubiquitin conjugates reveals that the Rpn10 substrate receptor contributes to the turnover of multiple proteasome targets. Mol. Cell. Proteomics 4, 741-751 https://doi.org/10.1074/mcp.M400220-MCP200
- Meimoun, A., Holtzman, T., Weissman, Z., McBride, H. J., Stillman, D. J., et al. (2000) Degradation of the transcription factor Gcn4 requires the kinase Pho85 and the SCF(CDC4) ubiquitin-ligase complex. Mol Biol Cell, 11, 915-927 https://doi.org/10.1091/mbc.11.3.915
- Natarajan, K., Meyer, M. R., Jackson, B. M., Slade, D., Roberts, C., et al. (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol. Cell. Biol. 21, 4347-4368 https://doi.org/10.1128/MCB.21.13.4347-4368.2001
- Penney, M., Wilkinson, C., Wallace, M., Javerzat, J. P., Ferrell, K., et al. (1998) The Pad1+ gene encodes a subunit of the 26 S proteasome in fission yeast. J. Biol. Chem. 273, 23938- 23945 https://doi.org/10.1074/jbc.273.37.23938
- Pries, R., Bomeke, K., Irniger, S., Grundmann, O., and Braus, G. H. (2002) Amino acid-dependent Gcn4p stability regulation occurs exclusively in the yeast nucleus. Eukaryot. Cell 1, 663-672 https://doi.org/10.1128/EC.1.5.663-672.2002
- Puig, O., Caspary, F., Rigaut, G., Rutz, B., Bouveret, E., et al. (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24, 218-229 https://doi.org/10.1006/meth.2001.1183
- Rao, H. and Sastry, A. (2002) Recognition of specific ubiquitin conjugates is important for the proteolytic functions of the ubiquitin-associated domain proteins Dsk2 and Rad23. J. Biol. Chem. 277, 11691-11695 https://doi.org/10.1074/jbc.M200245200
- Saeki, Y., Saitoh, A., Toh-e, A., and Yokosawa, H. (2002) Ubiquitin- like proteins and Rpn10 play cooperative roles in ubiquitin- dependent proteolysis. Biochem. Biophys. Res. Commun. 293, 986-992 https://doi.org/10.1016/S0006-291X(02)00340-6
- Schwartz, A. L. and Ciechanover, A. (1999) The ubiquitinproteasome pathway and pathogenesis of human diseases. Annu. Rev. Med. 50, 57-74 https://doi.org/10.1146/annurev.med.50.1.57
- Shemer, R., Meimoun, A., Holtzman, T., and Kornitzer, D. (2002) Regulation of the transcription factor Gcn4 by Pho85 cyclin PCL5. Mol. Cell. Biol. 22, 5395-5404 https://doi.org/10.1128/MCB.22.15.5395-5404.2002
- Sherman, F. (1991) Getting started with yeast. Methods Enzymol. 194, 3-21
- Verma, R., Oania, R., Graumann, J., and Deshaies, R. J. (2004) Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 118, 99- 110 https://doi.org/10.1016/j.cell.2004.06.014
- Wilkinson, C. R., Seeger, M., Hartmann-Petersen, R., Stone, M., Wallace, M., et al. (2001) Proteins containing the UBA domain are able to bind to multi-ubiquitin chains. Nat. Cell. Biol. 3, 939-943 https://doi.org/10.1038/ncb1001-939
- Won, J., Chung, S. Y., Kim, S. B., Byun, B. H., Yoon, Y. S., et al. (2006) Dose-dependent UV stabilization of p53 in cultured human cells undergoing apoptosis is mediated by poly(ADPribosyl) ation. Mol. Cells 21, 218-223
- Xie, Y. and Varshavsky, A. (2002) UFD4 lacking the proteasome- binding region catalyses ubiquitination but is impaired in proteolysis. Nat. Cell. Biol. 4, 1003-1007 https://doi.org/10.1038/ncb889
- Yang, R., Wek, S. A., and Wek, R. C. (2000) Glucose limitation induces GCN4 translation by activation of Gcn2 protein kinase. Mol. Cell. Biol. 20, 2706-2717 https://doi.org/10.1128/MCB.20.8.2706-2717.2000