• Title/Summary/Keyword: Transcription Regulator

Search Result 257, Processing Time 0.023 seconds

Switching Antibiotics Production On and Off in Actinomycetes by an IclR Family Transcriptional Regulator from Streptomyces peucetius ATCC 27952

  • Chaudhary, Amit Kumar;Singh, Bijay;Maharjan, Sushila;Jha, Amit Kumar;Kim, Byung-Gee;Sohng, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.8
    • /
    • pp.1065-1072
    • /
    • 2014
  • Doxorubicin, produced by Streptomyces peucetius ATCC 27952, is tightly regulated by dnrO, dnrN, and dnrI regulators. Genome mining of S. peucetius revealed the presence of the IclR (doxR) type family of transcription regulator mediating the signal-dependent expression of operons at the nonribosomal peptide synthetase gene cluster. Overexpression of doxR in native strain strongly repressed the drug production. Furthermore, it also had a negative effect on the regulatory system of doxorubicin, wherein the transcript of dnrI was reduced to the maximum level in comparision with the other two. Interestingly, the overexpression of the same gene also had strong inhibitory effects on the production of actinorhodin (blue pigment) and undecylprodigiosin (red pigment) in Streptomyces coelicolor M145, herboxidiene production in Streptomyces chromofuscus ATCC 49982, and spinosyn production in Saccharopolyspora spinosa NRRL 18395, respectively. Moreover, DoxR exhibited pleiotropic effects on the production of blue and red pigments in S. coelicolor when grown in different agar media, wherein the production of blue pigment was inhibited in R2YE medium and the red pigment was inhibited in YEME medium. However, the production of both blue and red pigments from S. coelicolor harboring doxR was halted in ISP2 medium, whereas S. coelicolor produced both pigmented antibiotics in the same plate. These consequences demonstrate that the on and off production of these antibiotics was not due to salt stress or media compositions, but was selectively controlled in actinomycetes.

Vibrio alginolyticus MviN is a LuxO-regulated Protein and Affects Cytotoxicity Towards Epithelioma Papulosum Cyprini (EPC) Cells

  • Cao, Xiaodan;Wang, Qiyao;Liu, Qin;Liu, Huan;He, Honghong;Zhang, Yuanxing
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.271-280
    • /
    • 2010
  • Vibrio alginolyticus, a Gram-negative marine bacterium, is one of the causative agents of fish vibriosis. Its virulence factors and pathogenesis mechanism are barely known, except for some extracellular products (ECPs) that are known to be regulated by quorum sensing system. Therefore, the present study used a microarray to analyze the transcription profiles of the wild-type V. alginolyticus and a deletion mutant of luxO, the pivotal regulator in Vibrio quorum sensing systems, which resulted in the identification of a putative virulence factor, MviN. Quantitative real-time reverse transcription PCR confirmed that the transcription of mviN was upregulated in the luxO mutant when compared with wild-type, and down regulated in a luxO-con complemented strain. Furthermore, Western blotting indicated that MviN was greatly induced during the late-exponential and stationary phases of growth, indicating that the expression of MviN was cell-density dependent and quorum sensing regulated in V. alginolyticus. Meanwhile, the mviN null mutant displayed a much slower growth rate than the wild type, signifying the essential role of MviN in V. alginolyticus. Western blotting also revealed that MviN was present as an extracellular protein in V. alginolyticus. When epithelioma papulosum cyprini (EPC) cells were treated with the ECPs of the mviN mutant, no cytotoxicity was observed, whereas EPC cells treated with the wild type exhibited pathological changes, which increased with the ECPs concentration and treatment time. Therefore, the results demonstrated that MviN is a LuxO-regulated ECPs component and involved in the pathogenicity of V. alginolyticus.

MiR-183-5p induced by saturated fatty acids regulates the myogenic differentiation by directly targeting FHL1 in C2C12 myoblasts

  • Nguyen, Mai Thi;Min, Kyung-Ho;Lee, Wan
    • BMB Reports
    • /
    • v.53 no.11
    • /
    • pp.605-610
    • /
    • 2020
  • Skeletal myogenesis is a complex process that is finely regulated by myogenic transcription factors. Recent studies have shown that saturated fatty acids (SFA) can suppress the activation of myogenic transcription factors and impair the myogenic differentiation of progenitor cells. Despite the increasing evidence of the roles of miRNAs in myogenesis, the targets and myogenic regulatory mechanisms of miRNAs are largely unknown, particularly when myogenesis is dysregulated by SFA deposition. This study examined the implications of SFA-induced miR-183-5p on the myogenic differentiation in C2C12 myoblasts. Long-chain SFA palmitic acid (PA) drastically reduced myogenic transcription factors, such as myoblast determination protein (MyoD), myogenin (MyoG), and myocyte enhancer factor 2C (MEF2C), and inhibited FHL1 expression and myogenic differentiation of C2C12 myoblasts, accompanied by the induction of miR-183-5p. The knockdown of FHL1 by siRNA inhibited myogenic differentiation of myoblasts. Interestingly, miR-183-5p inversely regulated the expression of FHL1, a crucial regulator of skeletal myogenesis, by targeting the 3'UTR of FHL1 mRNA. Furthermore, the transfection of miR-183-5p mimic suppressed the expression of MyoD, MyoG, MEF2C, and MyHC, and impaired the differentiation and myotube formation of myoblasts. Overall, this study highlights the role of miR-183-5p in myogenic differentiation through FHL1 repression and suggests a novel miRNA-mediated mechanism for myogenesis in a background of obesity.

Bach2 represses the AP-1-driven induction of interleukin-2 gene transcription in CD4+ T cells

  • Jang, Eunkyeong;Lee, Hye Rim;Lee, Geon Hee;Oh, Ah-Reum;Cha, Ji-Young;Igarashi, Kazuhiko;Youn, Jeehee
    • BMB Reports
    • /
    • v.50 no.9
    • /
    • pp.472-477
    • /
    • 2017
  • The transcription repressor Bach2 has been proposed as a regulator of T cell quiescence, but the underlying mechanism is not fully understood. Given the importance of interleukin-2 in T cell activation, we investigated whether Bach2 is a component of the network of factors that regulates interleukin-2 expression. In primary and transformed $CD4^+$ T cells, Bach2 overexpression counteracted T cell receptor/CD28- or PMA/ionomycin-driven induction of interleukin-2 expression, and silencing of Bach2 had the opposite effect. Luciferase and chromatin immunoprecipitation assays revealed that Bach2 binds to multiple Maf-recognition element-like sites on the interleukin-2 proximal promoter in a manner competitive with AP-1, and thereby represses AP-1-driven induction of interleukin-2 transcription. Thus, this study demonstrates that Bach2 is a direct repressor of the interleukin-2 gene in $CD4^+$ T cells during the immediate early phase of AP-driven activation, thereby playing an important role in the maintenance of immune quiescence in the steady state.

Virus-induced Silencing of the WRKY1 Transcription Factor that Interacts with the SL1 Structure of Potato virus X Leads to Higher Viral RNA Accumulation and Severe Necrotic Symptoms

  • Park, Sang-Ho;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.40-48
    • /
    • 2012
  • $Potato$ $virus$ $X$ (PVX) replication is precisely regulated by regulatory viral sequences and by viral and/or host proteins. In a previous study, we identified a 54-kDa cellular tobacco protein that bound to a region within the first 46 nucleotides (nt) of the 5' non-translated region (NTR) of the viral genome. Optimal binding was dependent upon the presence of an ACCA sequence at nt 10-13. To identify host factors that bind to 5' NTR elements including AC-rich sequences as well as stemloop 1 (SL1), we used northwestern blotting and matrixassisted laser desorption/ionization time-of-flight mass spectrometry for peptide mass fingerprinting. We screened several host factors that might affect PVX replication and selected a candidate protein, $Nicotiana$ $tabacum$ WRKY transcription factor 1 (NtWRKY1). We used a $Tobacco$ $rattle$ $virus$ (TRV)-based virus-induced gene silencing (VIGS) system to investigate the role of NtWRKY1 in PVX replication. Silencing of $WRKY1$ in $Nicotiana$ $benthamiana$ caused lethal apical necrosis and allowed an increase in PVX RNA accumulation. This result could reflect the balancing of PVX accumulation in a systemic $N.$ $benthamiana$ host to maintain PVX survival and still produce a suitable appearance of mosaic and mottle symptoms. Our results suggest that PVX may recruit the WRKY transcription factor, which binds to the 5' NTR of viral genomic RNA and acts as a key regulator of viral infection.

Molecular cloning of metal-responsive transcription factor-1 (MTF-1) and transcriptional responses to metal and heat stresses in Pacific abalone, Haliotis discus hannai

  • Lee, Sang Yoon;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.20 no.7
    • /
    • pp.9.1-9.13
    • /
    • 2017
  • Background: Metal-responsive transcription factor-1 (MTF-1) is a key transcriptional regulator playing crucial roles in metal homeostasis and cellular adaptation to diverse oxidative stresses. In order to understand cellular pathways associated with metal regulation and stress responses in Pacific abalone (Haliotis discus hannai), this study was aimed to isolate the genetic determinant of abalone MTF-1 and to examine its expression characteristics under basal and experimentally stimulated conditions. Results: The abalone MTF-1 shared conserved features in zinc-finger DNA binding domain with its orthologs; however, it represented a non-conservative shape in presumed transactivation domain region with the lack of typical motifs for nuclear export signal (NES) and Cys-cluster. Abalone MTF-1 promoter exhibited various transcription factor binding motifs that would be potentially related with metal regulation, stress responses, and development. The highest messenger RNA (mRNA) expression level of MTF-1 was observed in the testes, and MTF-1 transcripts were detected during the entire period of embryonic and early ontogenic developments. Abalone MTF-1 was found to be Cd inducible and highly modulated by heat shock treatment. Conclusion: Abalone MTF-1 possesses a non-consensus structure of activation domains and represents distinct features for its activation mechanism in response to metal overload and heat stress. The activation mechanism of abalone MTF-1 might include both indirect zinc sensing and direct de novo synthesis of transcripts. Taken together, results from this study could be a useful basis for future researches on stress physiology of this abalone species, particularly with regard to heavy metal detoxification and thermal adaptation.

Fusarium graminearum의 ZEB2 동형단백질에 의한 지랄레논 생합성 자가조절

  • Park, Ae Ran;Lee, Yin-Won
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.27-27
    • /
    • 2016
  • The ascomycete fungus Fusarium graminearum is the most common pathogen of Fusarium head blight (FHB), a devastating disease for major cereal crops worldwide. FHB causes significant crop losses by reducing grain yield and quality as well as contaminating cereals with trichothecenes and zearalenone (ZEA) that pose a serious threat to animal health and food safety. ZEA is a causative agent of hyperestrogenic syndrome in mammals and can result in reproductive disorders in farm animals. In F. graminearum, the ZEA biosynthetic cluster is composed of four genes, PKS4, PKS13, ZEB1, and ZEB2, which encode a reducing polyketide synthase, a nonreducing polyketide synthase, an isoamyl alcohol oxidase, and a transcription factor, respectively. Although it is known that ZEB2 primarily acts as a regulator of ZEA biosynthetic cluster genes, the mechanism underlying this regulation remains undetermined. In this study, two isoforms (ZEB2L and ZEB2S) from the ZEB2 gene in F. graminearum were characterized. It was revealed that ZEB2L contains a basic leucine zipper (bZIP) DNA-binding domain at the N-terminus, whereas ZEB2S is an N-terminally truncated form of ZEB2L that lacks the bZIP domain. Interestingly, ZEA triggered the induction of both ZEB2L and ZEB2S transcription. In ZEA producing condition, the expression of ZEB2S transcripts via alternative promoter usage was directly or indirectly initiated by ZEA. Physical interaction between ZEB2L and ZEB2L as well as between ZEB2L and ZEB2S was observed in the nucleus. The ZEB2S-ZEB2S interaction was detected in both the cytosol and the nucleus. ZEB2L-ZEB2L oligomers activated ZEA biosynthetic cluster genes, including ZEB2L. ZEB2S inhibited ZEB2L transcription by forming ZEB2L-ZEB2S heterodimers, which reduced the DNA-binding activity of ZEB2L. This study provides insight into the autoregulation of ZEB2 expression by alternative promoter usage and a feedback loop during ZEA production.

  • PDF

Genomic Organization and Promoter Characterization of the Murine Glial Cell-derived Neurotrophic Factor Inducible Transcription Factor (mGIF) Gene (생쥐 신경교세포 유래 신경영양인자 유도성 전사인자 (mGIF) 유전자의 유전체 구조 및 프로모터 특성 분석)

  • Kim, Ok-Soo;Kim, Yong-Man;Kim, Nam-Young;Lee, Eo-Jin;Jang, Min-Kyung;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.167-173
    • /
    • 2007
  • To study the transcriptional mechanisms by which expression of the murine glial cell-derived neurotrophic factor inducible transcription factor (mGIF) gene is regulated, a murine genomic clone was iso-lated using a mGIF cDNA as probe. A 13-kb genomic fragment, which comprises 4-kb upstream of the transcription initiation site was sequenced. The promoter region lacks a TATA box and CAAT box, is rich in G+C content, and has multiple putative binding sites for the transcription factor Spl. The mGIF gene also has consensus sequences for AP2 binding sites. The transcriptional activity of five deletion mutants of a 2.1-kb fragment was analyzed by modulating transcription of the heterologous luciferase gene in the promoterless plasmid pGL2-Basic. All mutants showed significant transcriptional activity in the murine neuroblastoma cell line NB41A3. Transient expression assays suggested the presence of a positive regulator between -213 and -129 while a negative regulator was found in the region between -806 and -214. Relatively strong transcriptional activity was observed in neuronal NB41A3, glial C6 cells and hepatic HepG2, but very weak activity in skeletal muscle C2C12 cells. These findings confirm the tissue-specific activity of the mGIF promoter and suggest that this gene shares structural and functional similarities with the dopamine receptor genes that it regulates.

The Up-Regulation of miR-199b-5p in Erythroid Differentiation Is Associated with GATA-1 and NF-E2

  • Li, Yuxia;Bai, Hua;Zhang, Zhongzu;li, Weihua;Dong, Lei;Wei, Xueju;Ma, Yanni;Zhang, Junwu;Yu, Jia;Sun, Guotao;Wang, Fang
    • Molecules and Cells
    • /
    • v.37 no.3
    • /
    • pp.213-219
    • /
    • 2014
  • MicroRNAs (miRNAs) represent a class of small non-coding regulatory RNAs that play important roles in normal hematopoiesis, including erythropoiesis. Although studies have identified several miRNAs that regulate erythroid commitment and differentiation, we do not understand the mechanism by which the crucial erythroid transcription factors, GATA-1and NF-E2 directly regulate and control differentiation via miRNA pathways. In this study, we identified miR-199b-5p as a key regulator of human erythropoiesis, and its expression was up-regulated during the erythroid differentiation of K562 cells. Furthermore, the increase of miR-199b-5p in erythroid cells occurred in a GATA-1- and NF-E2-dependent manner during erythrocyte maturation. Both GATA-1 and NF-E2 bound upstream of the miR-199b gene locus and activated its transcription. Forced expression of miRNA-199b-5p in K562 cells affected erythroid cell proliferation and maturation. Moreover, we identified c-Kit as a direct target of miR-199b-5p in erythroid cells. Taken together, our results establish a functional link among the erythroid transcription factors GATA-1/NF-E2, miR-199b-5p and c-Kit, and provide new insights into the coupling of transcription and post-transcription regulation in erythroid differentiation.

15-DEOXY-$\Delta^{12,14}$-PROSTAGLANDIN $J_2$, A LIGAND FOR EROXISOME PROLIFERATOR-ACTIVATED RECEPTOR-$\gamma$ INDUCES APOPTOSIS IN NEUROBLASTOMA CELLS

  • Kim, Eun-Joung;Jung, Kyoung-Mi;Park, Ki-Sook;Oh, Jae-Ho;Song, Chi-Won;Chung, Soo-Youn;Hong, Jin-Tae
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.05a
    • /
    • pp.167-167
    • /
    • 2001
  • Peroxisome proliferator-activated receptors(PPARs) are member of the neuclear hormone receptor superfamiliy of ligand-dependent transcription factors that heterodimerizes with the retinoid X receptor to function as a transcriptional regulator. They are divided into three subtypes(PPAR-$\alpha$, $\beta$ and ${\gamma}$).(omitted)

  • PDF