• Title/Summary/Keyword: Transcription Factor

Search Result 1,946, Processing Time 0.034 seconds

MiT Family Transcriptional Factors in Immune Cell Functions

  • Kim, Seongryong;Song, Hyun-Sup;Yu, Jihyun;Kim, You-Me
    • Molecules and Cells
    • /
    • v.44 no.5
    • /
    • pp.342-355
    • /
    • 2021
  • The microphthalmia-associated transcription factor family (MiT family) proteins are evolutionarily conserved transcription factors that perform many essential biological functions. In mammals, the MiT family consists of MITF (microphthalmia-associated transcription factor or melanocyte-inducing transcription factor), TFEB (transcription factor EB), TFE3 (transcription factor E3), and TFEC (transcription factor EC). These transcriptional factors belong to the basic helix-loop-helix-leucine zipper (bHLH-LZ) transcription factor family and bind the E-box DNA motifs in the promoter regions of target genes to enhance transcription. The best studied functions of MiT proteins include lysosome biogenesis and autophagy induction. In addition, they modulate cellular metabolism, mitochondria dynamics, and various stress responses. The control of nuclear localization via phosphorylation and dephosphorylation serves as the primary regulatory mechanism for MiT family proteins, and several kinases and phosphatases have been identified to directly determine the transcriptional activities of MiT proteins. In different immune cell types, each MiT family member is shown to play distinct or redundant roles and we expect that there is far more to learn about their functions and regulatory mechanisms in host defense and inflammatory responses.

인슐린의 신호전달 기전 : Transcription Factor AP-1 의 역활

  • 김성진
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.10a
    • /
    • pp.17-21
    • /
    • 1995
  • 대부분의 인슐린의 작용들은 인슐린 수용체를 통하여 이루어진다. 인슐린이 수용체에 결합하면, 수용체 고유의 tyrosine kinase 효소활성의 증가를 유발시키며, 결과적으로 세포내에 존재하는 기질 단백질, IRS-1, 의 tyrosine 잔기의 인산화를 증가시키게 된다. 이후, 여러 형태의 serine / threonine protein kinase 의 연속적인 활성화가 일어난다. 이들에 부가해서, 인슐린의 효자는 세포핵 내에까지 전달되어 유전자 발현의 조절과 같은 세포핵 고유의 활동에도 관여한다. 현재, 세포막에서 시작된 인슐린의 신호들이 세포핵까지 전달되는 정확한 기전에 대해서는 알려진 바 없지만, 최근의 연구에 의하면 MAP Kinase 와 S6 Kinase 그리고 Transcription Factor AP-1의 중요성이 제시되고 있다. 특히 유전자 조절 기전에는 핵단백질인 transcription factor의 인산화 반응이 큰 역할을 한다고 보고되고 있는바, 본 연구에서 AP-1. transcription factor 의 인산화 반응이 인슐린의 신호전달계에 미치는 역할에 대하여 고찰하였다. 요약하면, AP-1 transcription factor의 구성원인 c-Jun, c-Fos 그리고 Fos 관련 단백질들의 인산화가 인슐린에 의해 증가되며, 동시에 그들의. DNA-binding activity 와 유전자 발현의 활성이 증가됨을 밝힘으로써, AP-1 transcription factor의 인산화 반응이 인슐린의 핵 내에서의 작용기전에 중요한 역할을 함이 제시되고 있다. 또한 AP-1 의 인산화 반응에 관여하는 세포핵 protein kinase로서 Casein Kinase II 의 중요성이 밝혀졌다.

  • PDF

Temporal Regulation of Ovine Interferon-tau Gene by the Transcription Factor Eomesodermin in the Peri-Implantation Period

  • Kim, Min-Su;Lim, Hyun-Joo;Lee, Ji Hwan;Hur, Tae Young;Son, Jun Kyu
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.292-299
    • /
    • 2019
  • Interferon tau (IFNT) regulation, an anti-luteolytic factor produced by conceptuses of the ruminant ungulates, is essential for the maintenance of early pregnancy, but a definitive mechanism for its temporal transcription has not been elucidated. We and others have observed the T-box protein eomesodermin (EOMES) exhibited high mRNA expression in the ovine embryonic trophectoderm; thus, both caudal-relatedhomeobox-2 (CDX2) and EOMES coexist during the early stages of conceptus development. Objective of this study was to examine the effect of EOMES on ovine IFNT gene transcription when evaluated with CDX2, ETS2 and AP1 transcription factors implicated in the control of cell differentiation in the trophectoderm. In this study, quantitatively via reverse transcription-polymerase chain reaction (RT-PCR) analysis between ovine trophoblast cells was initially performed, finding that transcription factors CDX2 and 'EOMES transcription factor mRNAs' were specific to trophectoderm cells. These mRNAs were also found in days 15, 17, and 21 ovine conceptuses. Furthermore, human choriocarcinoma JEG3 cells (trophoblast cell line) were cotransfected with an ovine IFNT (-654bp)-luciferase reporter (-654-oIFNT-Luc) construct and several transcription factor expression plasmids. Cotransfection of the reporter construct with CDX2, ETS2 and AP1 increased transcription of -654-oIFNT-Luc by about 11-fold compared with transfection of the construct alone. When cells were initially transfected with EOMES followed by transfection with CDX2, ETS2 and/or AP1, the expression of -654-oIFNT-Luc was decreased. Also, EOMES factor inhibited the stimulatory activity of CDX2 alone. These results suggest that when conceptuses attach to the uterine epithelium, ovine IFNT gene transcription is down-regulated by an increase of EOMES factor expression in the attached ovine trophoblast cells.

Inhibitory Effects of Natural Products against NFAT (nuclear factor of activated T cells) Transcription Factor (NFAT(nuclear factor of activated T cells) 전사인자에 대한 천연물의 저해활성)

  • Lee, Im-Seon;Dat, Nguyen-Tien;Cai, Xing-Fu;Shen, Guang-Hai;Kim, Young-Ho
    • Korean Journal of Pharmacognosy
    • /
    • v.34 no.2 s.133
    • /
    • pp.150-155
    • /
    • 2003
  • The nuclear factor of activated T cells (NFAT) protein induce transcription of cytokine genes required for T-cell activation, including the IL-2 gene. Activation of NFAT normally plays a significant role in inducing immune response. However, excessive activation provokes immunopathological reactions including autoimmunity, transplant rejection and inflammation. Thus, several natural products were screened on the inhibitory activity against the NFAT transcription factor. Among them, Euonymus sieboldiana showed strong inhibitory activity against the NFAT transcription factor without affecting cell viability.

Discovery of Novel Transcription Factor Inhibitors Using a Pyrazole-based Small Molecule Library

  • Ha, Hyung-Ho;Kim, B.Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.323-327
    • /
    • 2008
  • A focused library of pyrazole-based compounds was constructed towards novel transcription factor inhibitors. Complementary hydrogen bonding interaction with b-sheet peptide structures was the basis for the design of 5-amino-3-pyrazole carboxamide scaffold. From the preliminary inhibition assay against several transcription factors, compounds 7e and 8g were identified as novel lead compounds against HIF-1a and NF-AT transcription factors, respectively.

Inhibitory Lignans against NFAT Transcription Factor from Acanthopanax koreanum

  • Cai, Xing-Fu;Lee, Im-Seon;Dat, Nguyen-Tien;Guanghai-Shen;Kang, Jong-Seong;Kim, Dong-Hyun;Kim, Young-Ho
    • Archives of Pharmacal Research
    • /
    • v.27 no.7
    • /
    • pp.738-741
    • /
    • 2004
  • Three lignans isolated from the roots of A. koreanum (Araliaceae), namely eleutheroside E(1), tortoside A(2), and hemiariensin(4), were evaluated for their ability to inhibit NFAT transcription factor. Of these compounds, compound 4, possessing a diarylbutane skeleton, exhibited potent inhibitory activity against NFAT transcription factor (($IC_{50}$ : 36.3${\pm}2.5{\mu}\textrm{M}$). However, the activities of 1 (($IC_{50}$:>500 11M) and 2 (($IC_{50}$: 136.1 ${\pm}9.4\mu\textrm{M}$), which possess bisaryldioxabicy-clooctane skeletons, were lower. As the lignan derivatives of the same skeletons, hinokinin (5) and (-)-yatein (6) with diarylbutane skeletons and(+)-syringaresinol (3) with a bisaryldioxabicy-clooctane skeleton were also studied for their inhibitory effects on NFAT transcription factor.

Insights into the signal transduction pathways of mouse lung type II cells revealed by transcription factor profiling in the transcriptome

  • Ramana, Chilakamarti V.
    • Genomics & Informatics
    • /
    • v.17 no.1
    • /
    • pp.8.1-8.10
    • /
    • 2019
  • Alveolar type II cells constitute a small fraction of the total lung cell mass. However, they play an important role in many cellular processes including trans-differentiation into type I cells as well as repair of lung injury in response to toxic chemicals and respiratory pathogens. Transcription factors are the regulatory proteins dynamically modulating DNA structure and gene expression. Transcription factor profiling in microarray datasets revealed that several members of AP1, ATF, $NF-{\kappa}B$, and C/EBP families involved in diverse responses were expressed in mouse lung type II cells. A transcriptional factor signature consisting of Cebpa, Srebf1, Stat3, Klf5, and Elf3 was identified in lung type II cells, Sox9+ pluripotent lung stem cells as well as in mouse lung development. Identification of the transcription factor profile in mouse lung type II cells will serve as a useful resource and facilitate the integrated analysis of signal transduction pathways and specific gene targets in a variety of physiological conditions.

Partial Purification of Factors for Differential Transcription of the rrnD Promoters for Ribosomal RNA Synthesis in Streptomyces coelicolor

  • Hahn, Mi-Young;Roe, Jung-Hye
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.534-540
    • /
    • 2007
  • The Streptomyces coelicolor A3(2) genome contains six operons (rrnA to F) for ribosomal RNA synthesis. Transcription from rrnD occurs from four promoters (p1 to p4). We found that transcripts from the p1 and p3 promoters were most abundant in vivo in the early exponential phase. However, at later phases of exponential and stationary growth, transcripts from the p1 promoter decreased drastically, with the p3 and p4 transcripts constituting the major forms. Partially purified RNA polymerase supported transcription from the p3 and p4 promoters, whereas pure reconstituted RNA polymerase with core enzyme (E) and the major vegetative sigma factor ${\sigma}^{HrdB}$ ($E{\cdot}{\sigma}^{HrdB}$) did not. In order to assess any potential requirement for additional factor(s) that allow transcription from the p3 and p4 promoters, we fractionated a partially purified RNA polymerase preparation by denaturing gel filtration chromatography. We found that transcription from the p3 and p4 promoters required factor(s) of about 30-35 kDa in addition to RNAP holoenzyme ($E{\cdot}{\sigma}^{HrdB}$). Therefore, transcription from the p3 and p4 promoters, which contain a consensus -10 region but no -35 for ${\sigma}^{HrdB}$ recognition, are likely to be regulated by transcription factor(s) that modulate RNA polymerase holoenzyme activity in S. coelicolor.

Enhancement of Lipid Production under Heterotrophic Conditions by Overexpression of an Endogenous bZIP Transcription Factor in Chlorella sp. HS2

  • Lee, Hansol;Shin, Won-Sub;Kim, Young Uk;Jeon, Seungjib;Kim, Minsik;Kang, Nam Kyu;Chang, Yong Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1597-1606
    • /
    • 2020
  • Transcription factor engineering to regulate multiple genes has shown promise in the field of microalgae genetic engineering. Here, we report the first use of transcription factor engineering in Chlorella sp. HS2, thought to have potential for producing biofuels and bioproducts. We identified seven endogenous bZIP transcription factors in Chlorella sp. HS2 and named them HSbZIP1 through HSbZIP7. We overexpressed HSbZIP1, a C-type bZIP transcription factor, in Chlorella sp. HS2 with the goal of enhancing lipid production. Phenotype screening under heterotrophic conditions showed that all transformants exhibited increased fatty acid production. In particular, HSbZIP1 37 and 58 showed fatty acid methyl ester (FAME) yields of 859 and 1,052 mg/l, respectively, at day 10 of growth under heterotrophic conditions, and these yields were 74% and 113% higher, respectively, than that of WT. To elucidate the mechanism underlying the improved phenotypes, we identified candidate HSbZIP1-regulated genes via transcription factor binding site analysis. We then selected three genes involved in fatty acid synthesis and investigated mRNA expression levels of the genes by qRT-PCR. The result revealed that the possible HSbZIP1-regulated genes involved in fatty acid synthesis were upregulated in the HSbZIP1 transformants. Taken together, our results demonstrate that HSbZIP1 can be utilized to improve lipid production in Chlorella sp. HS2 under heterotrophic conditions.

Etv5, a transcription factor with versatile functions in male reproduction

  • Eo, Jinwon;Song, Haengseok;Lim, Hyunjung Jade
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.39 no.2
    • /
    • pp.41-45
    • /
    • 2012
  • Transcription factors govern diverse aspects of cell growth and differentiation as major switches of gene expression. Etv5, a member of the E26 transformation-specific family of transcription factors, has many stories to share when it comes to reproduction. Etv5 deficient mice show complex infertility phenotypes both in males and females. In males, the infertility phenotype exhibited by Etv5 deficiency is sexually dimorphic, and it involves both somatic cells and germ cells. In $Etv5^{-/-}$ female mice, the problem is more complicated by hormonal involvement. This review synthesizes old and new information on this versatile transcription factor-from the inadvertent discovery of its role in the testes to its newly discovered role in maintaining spermatogonial stem cells.