• 제목/요약/키워드: Transcranial electrical stimulation

검색결과 19건 처리시간 0.021초

The development of a high efficient transcranial magnetic stimulation adopted real time-charging-discharging circuit

  • Kim, Whi-Young;Park, Sung-Joon
    • 전기전자학회논문지
    • /
    • 제14권2호
    • /
    • pp.9-15
    • /
    • 2010
  • In this study, we have been proposed the new type of a transcranial magnetic stimulation adopted a variable voltage capacitor with Cockcroft-Walton circuit and constant-frequency current resonant half-bridge inverter. This a transcranial magnetic stimulation has some merits compared with the conventional one. First, it doesn't require the high voltage transformer. And second, it has less switching losses, compact size and capability in adjusting the transcranial magnetic stimulation output energy precisely. In this paper, we have performed the output characteristics of a transcranial magnetic stimulation system which is well known as magnetic stimulation. The tested results are described as a function of pulse repetition rate and switching numbers of the half-bridge inverter.

Non-Invasive Neuromodulation for Tinnitus

  • Langguth, Berthold
    • 대한청각학회지
    • /
    • 제24권3호
    • /
    • pp.113-118
    • /
    • 2020
  • Tinnitus is a prevalent disorder that has no cure currently. Within the last two decades, neuroscientific research has facilitated a better understanding of the pathophysiological mechanisms that underlie the generation and maintenance of tinnitus, and the brain and nerves have been identified as potential targets for its treatment using non-invasive brain stimulation methods. This article reviews studies on tinnitus patients using transcranial magnetic stimulation, transcranial electrical stimulation, such as transcranial direct current stimulation, alternating current stimulation, transcranial random noise stimulation as well as transcutaneous vagus nerve stimulation and bimodal combined auditory and somatosensory stimulation. Although none of these approaches has demonstrated effects that would justify its use in routine treatment, the studies have provided important insights into tinnitus pathophysiology. Moreover bimodal stimulation, which has only been developed recently, has shown promising results in pilot trials and is a candidate for further development into a valuable treatment procedure.

Non-Invasive Neuromodulation for Tinnitus

  • Langguth, Berthold
    • Journal of Audiology & Otology
    • /
    • 제24권3호
    • /
    • pp.113-118
    • /
    • 2020
  • Tinnitus is a prevalent disorder that has no cure currently. Within the last two decades, neuroscientific research has facilitated a better understanding of the pathophysiological mechanisms that underlie the generation and maintenance of tinnitus, and the brain and nerves have been identified as potential targets for its treatment using non-invasive brain stimulation methods. This article reviews studies on tinnitus patients using transcranial magnetic stimulation, transcranial electrical stimulation, such as transcranial direct current stimulation, alternating current stimulation, transcranial random noise stimulation as well as transcutaneous vagus nerve stimulation and bimodal combined auditory and somatosensory stimulation. Although none of these approaches has demonstrated effects that would justify its use in routine treatment, the studies have provided important insights into tinnitus pathophysiology. Moreover bimodal stimulation, which has only been developed recently, has shown promising results in pilot trials and is a candidate for further development into a valuable treatment procedure.

양극 경두개 직류 전기 자극이 중추신경원의 흥분성에 미치는 영향 (Anodal Effects of Transcranial Direct Current Stimulation on the Excitability of Central Neuron)

  • 임영은;정진선;이정우
    • 대한임상전기생리학회지
    • /
    • 제9권2호
    • /
    • pp.19-24
    • /
    • 2011
  • Purpose : This study is to examine the effects of transcranial direct current stimulation on the excitability of the central neuron. Methods : This study selected 24 suitable women in their twenties. A positive electrode of transcranial direct current stimulation was placed on the primary motor area (M1) C4 and a negative electrode was placed on the left supraobital. A stimulation of 0.04mA/$cm^2$ was applied for 20 minutes. H-reflex and V wave used diagnostic electromyography. An active electrode was placed at the muscle belly of the medial gastrocnemius muscle at a prone posture. An electrical stimulation was given to the posterior tibial nerve. Measurements were made before and after the stimulation. All data were analyzed with SPSS 12.0 and between each measuring before and after the change of the H-reflex and V wave amplitude. Results : There were no significant differences in all H wave, M wave, and V wave amplitude before and after transcranial direct current stimulation. There were no significant differences in the change of H/M ratio and V/M ratio before and after transcranial direct current stimulation. Conclusion : We know that transcranial direct current stimulation cannot have an influence on a normal grown-up person's central neuron.

구형파 변조된 경두개 자기자극을 이용한 쥐의 감각피질 자극실험 (Mouse Somatosensory Cortex Stimulation Using Pulse Modulated Transcranial Magnetic Stimulation)

  • 선석규;서태윤;허여울;조제원;권영우
    • 한국전자파학회논문지
    • /
    • 제27권5호
    • /
    • pp.482-485
    • /
    • 2016
  • 본 논문에서는 쥐 뇌의 감각 피질을 자극하기 위해 변조신호를 이용하여 경두개 자기자극(TMS) 동물실험을 수행하였다. 제안한 TMS 시스템은 인버터, 변압기, 커패시터, 가변 인덕터, 자극 코일로 구성되어 쥐 뇌의 감각피질에 약 1.5 mT의 자기장이 생기도록 시스템을 설계하였다. 자극 신호는 구형파 변조되었으며, 반송 주파수는 85~91 kHz의 범위로 변화시키며, 자극 효과를 관찰하였다. 자극 결과 반송 주파수가 89 kHz 미만일 때에는 자극의 효과를 볼 수 없었고, 반송 주파수가 89 kHz 이상일 때에는 압력 자극에 반응하는 역치 값이 낮아지는 효과를 볼 수 있었다.

정상 성인에서 경두개 직류 전류자극과 기능적 전기자극에 의한 대뇌피질의 활성화: 사례연구 (Cortical Activation by Transcranial Direct Current Stimulation and Functional Electrical Stimulation in Normal Subjects: 2 Case Studies)

  • 권용현;권중원;박상영;장성호
    • The Journal of Korean Physical Therapy
    • /
    • 제23권1호
    • /
    • pp.77-82
    • /
    • 2011
  • Purpose: Recently, many studies have demonstrated that application of external stimulation can modulate cortical excitability of the human brain. We attempted to observe cortical excitability using functional magnetic resonance imaging (fMRI) during the application of transcranial direct current stimulation (tDCS) or functional electrical stimulation (FES). Methods: We recruited two healthy subjects without a history of neurological or psychiatric problems. fMRI scanning was done during? each constant anodal tDCS and FES session, and each session was repeated three times. The tDCS session consisted of three successive phases (resting phase: 60sec dummy cycle: 10sec tDCS phase: 60sec). The FES session involved stimulation of wrist extensor muscles over two successive phase (resting phase: 15sec FES phase: 15sec). Results: The average map of the tDCS and FES analyses showed that the primary sensory-motor cortex area was activated in all subjects. Conclusion: Our findings show that cortical activation can be induced by constant anodal tDCS and FES. They suggest that the above stimuli have the potential for facilitating brain plasticity and modulating neural excitability if applied as specific therapeutic interventions for brain injured patients.

Perspective for Clinical Application and Research of Transcranial Direct Current Stimulation in Physical Therapy

  • Kim, Chung-Sun;Nam, Seok-Hyun
    • The Journal of Korean Physical Therapy
    • /
    • 제22권6호
    • /
    • pp.91-98
    • /
    • 2010
  • Neurostimulation approaches have been developed and explored to modulate neuroplastic changes of cortical function in human brain. As one of the most primary noninvasive tools, transcranial direct current stimulation (tDCS) was extensively studied in the field of neuroscience. The alternation of cortical neurons depending on the polarity of the tDCS has been used for improving cognitive processing including working memory, learning, and language in normal individuals, as well as in patients with neurological or psychiatric diseases. In addition, tDCS has great advantages: it is a non-invasive, painless, safe, and cost-effective approach to enhance brain function in normal subjects and patients with neurological disorders. Numerous previous studies have confirmed the efficacy of tDCS. However, tDCS has not been considered for clinical applications and research in the field of physical therapy. Therefore, this review will focus on the general principles of tDCS and its related application parameters, and provide consideration of motor behavioral research and clinical applications in physical therapy.

Arm Cortex S3C2440 Microcontroller Application for Transcranial Magnetic Stimulation's Pulse Forming on Bax Reactive Cells and Cell Death in Ischemia Induced Rats

  • Tac, Han-Ho;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • 제21권2호
    • /
    • pp.266-272
    • /
    • 2016
  • Transcranial magnetic stimulation devices has been used mainly for diagnostic purposes by measuring the functions of the nervous system rather than for treatment purposes, and has a problem of considerable energy fluctuations per repeated pulse. The majority of strokes are caused by ischemia and result in brain tissue damage, leading to problems of the central nervous system including hemiparesis, dysfunction of language and consciousness, and dysfunction of perception. Control is difficult and the size is large due to the difficulty of digitalizing the energy stored in a capacitor, and there are many heavy devices. In addition, there are many constraints when it is used for a range of purposes such as head and neck diagnosis, treatment and rehabilitation of nerve palsy, muscle strengthening, treatment of urinary incontinence etc. Output stabilization and minimization of the energy variation rate are required as the level of the transcranial magnetic stimulation device is dramatically improved and the demand for therapeutic purposes increases. This study developed a compact, low cost transcranial magnetic stimulation device with minimal energy variation of a high repeated pulse and output stabilization using a real time capacitor charge discharge voltage. Ischemia was induced in male SD rats by closing off the common carotid artery for 5 minutes, after which the blood was re-perfused. In the cerebrum, the number of PARP reactive cells after 24 hours significantly decreased (p < 0.05) in the TMS group compared to the GI group. As a result, TMS showed the greatest effect on necrosis-related PARP immuno-reactive cells 24 hours after ischemia, indicating necrosis inhibition, blocking of neural cell death, and protection of neural cells.

전기전도도의 비균질성을 고려한 정밀 두뇌 모형 내부에서 유기되는 유도 전기장 분포해석 (Numerical Analysis of Electric Field Distribution Induced Inside a Realistic Brain Model Considering Conductivity Heterogeneity)

  • 김동훈;이일호;원철호
    • 전기학회논문지
    • /
    • 제57권2호
    • /
    • pp.314-319
    • /
    • 2008
  • In this paper, the electric field distribution induced inside the brain during Transcranial Magnetic Stimulation(TMS) has been thoroughly investigated in terms of tissue heterogeneity and anisotropy as well as different head models. To achieve this, first, an elaborate head model consisting of seven major parts of the head has been built based on the Magnetic Resonance(MR) image data. Then the Finite Element Method(FEM) has been used to evaluate the electric field distribution under different head models or three different conductivity conditions when the head model has been exposed to a time varying magnetic field achieved by utilizing the Figure-Of-Eight(FOE) stimulation coil. The results show that the magnitude as well as the distribution of the induced field is significantly affected by the degree of geometrical asymmetry of head models and conductivity conditions with respect to the center of the FOE coil.

경두개 전침과 발효황금 병행 투여가 흰쥐의 허혈성 뇌세포 손상에 미치는 효과 (Combination of Transcranial Electro-Acupuncture and Fermented Scutellaria baicalensis Ameliorates Motor Recovery and Cortical Neural Excitability Following Focal Stroke in Rats)

  • 김민선;구호;최명애;문세진;양승범;김재효
    • Korean Journal of Acupuncture
    • /
    • 제35권4호
    • /
    • pp.187-202
    • /
    • 2018
  • Objectives : Non-invasive transcranial electrical stimulation is one of therapeutic interventions to change in neural excitability of the cortex. Transcranial electro-acupuncture (TEA) can modulate brain functions through changes in cortical excitability as a model of non-invasive transcranial electrical stimulation. Some composites of fermented Scutellaria baicalenis (FSB) can activate intercellular signaling pathways for activation of brain-derived neurotrophic factor that is critical for formation of neural plasticity in stroke patients. This study was aimed at evaluation of combinatory treatment of TEA and FSB on behavior recovery and cortical neural excitability in rodent focal stroke model. Methods : Focal ischemic stroke was induced by photothrombotic injury to the motor cortex of adult rats. Application of TEA with 20 Hz and $200{\mu}A$ in combination with daily oral treatment of FBS was given to stroke animals for 3 weeks. Motor recovery was evaluated by rotating bean test and ladder working test. Electrical activity of cortical pyramidal neurons of stroke model was evaluated by using multi-channel extracellular recording technique and thallium autometallography. Results : Compared with control stroke group who did not receive any treatment, Combination of TEA and FSB treatment resulted in more rapid recovery of forelimb movement following focal stroke. This combination treatment also elicited increase in spontaneous firing rate of putative pyramidal neurons. Furthermore expression of metabolic marker for neural excitability was upregulated in peri-infract area under thallium autometallography. Conclusions : These results suggest that combination treatment of TEA and FSB can be a possible remedy for motor recovery in focal stroke.