• 제목/요약/키워드: Transcranial direct current stimulation(tDCS)

Search Result 59, Processing Time 0.026 seconds

Current Update on Transcranial Direct Current Stimulation as Treatment for Major Depressive Disorder (주요우울장애의 치료로서 경두개 직류자극술(Transcranial Direct Current Stimulation)의 현재)

  • Lee, Seung-Hoon;Kim, Yong-Ku
    • Korean Journal of Biological Psychiatry
    • /
    • v.25 no.4
    • /
    • pp.89-100
    • /
    • 2018
  • Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation method that delivers 1-2 mA of current to the scalp. Several clinical studies have been conducted to confirm the therapeutic effect of major depressive disorder (MDD) patients with tDCS. Some studies have shown tDCS's antidepressant effect, while the others showed conflicting results in antidepressant effects. Our aim of this review is to understand the biological bases of tDCS's antidepressant effect and review the results of studies on tDCS's antidepressant effect. For the review and search process of MDD treatment using tDCS, the US National Library of Medicine search engine PubMed was used. In this review, we discuss the biological mechanism of tDCS's antidepressant effect and the existing published literature including meta-analysis, systematic review, control trial, open studies, and case reports of antidepressant effects and cognitive function improvement in patients with MDD are reviewed. We also discuss the appropriate tDCS protocol for MDD patients, factors predictive of response to tDCS treatment, the disadvantages of tDCS in MDD treatment, and side effects.

  • PDF

Therapeutic Application of Transcranial Magnetic Stimulation and Transcranial Direct Current Stimulation in Depression (우울증에서 비침습적 두뇌 자극 치료 : 경두개 자기자극과 경두개 직류자극)

  • Chae, Jeong-Ho
    • Journal of Korean Neuropsychiatric Association
    • /
    • v.57 no.2
    • /
    • pp.119-132
    • /
    • 2018
  • Despite the fact that pharmacotherapy depressive disorders have proven efficacy, a substantial number of patients are resistant to conventional management. As neuroscientific research about pathophysiology of depression have accumulated, repeated transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) have emerged as an important mechanism-based treatment modality. This overview provides a review of therapeutic application of rTMS and tDCS in patients with depression. The clinical and basic studies of rTMS and tDCS in depression were reviewed and integrated using a literature review and interview with experts. rTMS is a noninvasive procedure of a localized pulsed magnetic field to the surface of the head to cause a depolarization of neurons in the brain cortex. tDCS has a mechanism of modulating cortical excitability in a polarity-specific manner without eliciting action potentials. rTMS and tDCS seem promising for treating depression. Although therapeutic parameters and further technical improvement remain to be systematically investigated, rTMS and tDCS would be a safe and effective intervention to treat depression.

Transcranial direct current stimulation for spinal cord injury-associated neuropathic pain

  • Li, Caixia;Jirachaipitak, Sukunya;Wrigley, Paul;Xu, Hua;Euasobhon, Pramote
    • The Korean Journal of Pain
    • /
    • v.34 no.2
    • /
    • pp.156-164
    • /
    • 2021
  • Several types of pain occur following spinal cord injury (SCI); however, neuropathic pain (NP) is one of the most intractable. Invasive and non-invasive brain stimulation techniques have been studied in clinical trials to treat chronic NP following SCI. The evidence for invasive stimulation including motor cortex and deep brain stimulation via the use of implanted electrodes to reduce SCI-related NP remains limited, due to the small scale of existing studies. The lower risk of complications associated with non-invasive stimulation, including transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS), provide potentially attractive alternative central neuromodulation techniques. Compared to rTMS, tDCS is technically easier to apply, more affordable, available, and potentially feasible for home use. Accordingly, several new studies have investigated the efficacy of tDCS to treat NP after SCI. In this review, articles relating to the mechanisms, clinical efficacy and safety of tDCS on SCI-related NP were searched from inception to December 2019. Six clinical trials, including five randomized placebo-controlled trials and one prospective controlled trial, were included for evidence specific to the efficacy of tDCS for treating SCI-related NP. The mechanisms of action of tDCS are complex and not fully understood. Several factors including stimulation parameters and individual patient characteristics may affect the efficacy of tDCS intervention. Current evidence to support the efficacy of utilizing tDCS for relieving chronic NP after SCI remains limited. Further strong evidence is needed to confirm the efficacy of tDCS intervention for treating SCI-related NP.

Perspective for Clinical Application and Research of Transcranial Direct Current Stimulation in Physical Therapy

  • Kim, Chung-Sun;Nam, Seok-Hyun
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.6
    • /
    • pp.91-98
    • /
    • 2010
  • Neurostimulation approaches have been developed and explored to modulate neuroplastic changes of cortical function in human brain. As one of the most primary noninvasive tools, transcranial direct current stimulation (tDCS) was extensively studied in the field of neuroscience. The alternation of cortical neurons depending on the polarity of the tDCS has been used for improving cognitive processing including working memory, learning, and language in normal individuals, as well as in patients with neurological or psychiatric diseases. In addition, tDCS has great advantages: it is a non-invasive, painless, safe, and cost-effective approach to enhance brain function in normal subjects and patients with neurological disorders. Numerous previous studies have confirmed the efficacy of tDCS. However, tDCS has not been considered for clinical applications and research in the field of physical therapy. Therefore, this review will focus on the general principles of tDCS and its related application parameters, and provide consideration of motor behavioral research and clinical applications in physical therapy.

Comparison of Golf Putting Performance on Transcranial Direct Current Stimulation (경두개직류자극 유뮤에 따른 골프 퍼팅 수행력 비교 분석)

  • Lee, Jae-Woo;Park, Jun-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.1476-1484
    • /
    • 2021
  • The purpose of this study was to compare the golf performance on transcranial direct current stimulation(tDCS). Ten collegiate golfers were participated. SAMPutt basic unit was used to analyze the kinematic data of putter head. A putting platform and a tDCS were used for putting tasks. It was performed paired t-test to compare between before tDCS and after tDCS. A significant level of .05 using SPSS 24.0. Face at aim and backswing variables of putter head were significantly different during flat putting. Impact spot of putter head was significantly different during 2° of hook slope. However, there were not significantly different others slope angle. It was found that transcranial direct current stimulation had a positive effect on kinematic variables. Based on these results, further research is needed to confirm the effect of transcranial direct current stimulation on body stability during putting task.

The Ongoing Effect of Transcranial Direct Current Stimulation on both the Hemispheres: Single Case fMRI Study

  • Kwon, Jung-Won;Son, Sung-Min;Kim, Chung-Sun;Cho, In-Sul
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.6
    • /
    • pp.49-53
    • /
    • 2011
  • Purpose: The purpose of this study is to investigate whether dual-hemisphere transcranial direct current stimulation (tDCS) could induce more cortical activity, compared to single-hemisphere, using functional MRI (fMRI). Methods: One right-handed healthy subject was recruited. Three phases of dual-hemisphere tDCS (i.e. anodal tDCS over the left-dominant primary sensoriomotor cortex (SM1) and cathodal tDCS over the right-non dominant SM(1) were consecutively delivered on to a subject, during fMRI scanning. The voxel count and the intensity index in the averaged cortical map were analyzed among the three tDCS phases. Results: Our result showed that cortical activation was observed on all the three phases of the dual-hemisphere tDCS. Voxel count and intensity index were as following; 912 and 4.07 in the first phase, 1102 and 3.90 in the second phase, 1031 and 3.80 in the third phase. Conclusion: This study demonstrated that application of the dual-hemisphere tDCS could induce cortical activity and maintain to recruit cortical neurons. Our findings suggested that application of dual-hemisphere tDCS could produce efficiency of the ongoing tDCS effect to facilitate cortical excitability.

Online-Effects of Transcranial Direct Current Stimulation on Bimanual Force Control Performances in Healthy Young Adults (실시간 비침습적 뇌전기 자극이 양손 힘 조절능력에 미치는 영향)

  • Tae Lee, Lee;Joon Ho, Lee;Nyeonju, Kang
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.4
    • /
    • pp.121-127
    • /
    • 2022
  • Objective: The purpose of this study was to investigate potential effects of transcranial direct current stimulation (tDCS) on bimanual force control capabilities in healthy young adults. Method: Eighteen right-handed healthy young adults (10 females and 8 males; age: 23.55 ± 3.56 yrs) participated in this crossover design study. All participants were randomly allocated to both active-tDCS and sham-tDCS conditions, respectively. While receiving 20 min of active- or sham-tDCS interventions, all participants performed bimanual isometric force control tasks at four submaximal targeted force levels (i.e., 5%, 10%, 15, and 20% of maximal voluntary contraction: MVC). To compare bimanual force control capabilities including force accuracy, variability, and regularity between active-tDCS and sham-tDCS conditions, we conducted two-way repeated measures ANOVAs (2 × 4; tDCS condition × Force levels). Results: We found no significant difference in baseline MVC between active-tDCS and sham-tDCS conditions. Moreover, our findings revealed that providing bilateral tDCS including anodal tDCS on left primary motor cortex (M1) and cathodal on right M1 while conducting bimanual force control trials significantly decreased force variability and regularity at 5%MVC. Conclusion: These findings suggest that providing bilateral tDCS on M1 areas may improve bimanual force control capabilities at a relatively low targeted force level.

Change of Cerebral Motor Area Activity by Anodal Transcranial Direct Current Stimulation (tDCS) (양극 경두개직류자극에 의한 운동관련피질전위의 변화)

  • Lim, Young-Eun;Kim, Su-Hyon;Yang, Dae-Jung;Kim, Tae-Youl
    • The Journal of Korean Physical Therapy
    • /
    • v.21 no.4
    • /
    • pp.65-71
    • /
    • 2009
  • Purpose: Transcranial direct current stimulation (tDCS) is a useful method for modulating the brain activity. This study compared the effect of continuous and interrupted tDCS using the change in the movement related cortical potential. Methods: Thirty healthy participants (male: 18 and female: 12) were assigned randomly to three groups; sham tDCS, continuous tDCS, which the current continuously flowed for 10 minutes, and interrupted tDCS, which the interrupted current flowed for 10 minutes (repetition: 4sec stimulation and 5sec rest) at an intensity of 1mA with anodal polarity. The effect of tDCS on the right primary motor area was measured from the movement related cortical potential (MRCP) before and after the experiment. MRCP consisted of the bereitshaftspotential (BP) and negative slope potential (NS) at Cz and C4. Results: Continuous and interrupted tDCS showed a significant difference in the changes in the BP, NS at Cz and C4 compared to the sham tDCS. However, there was no significant difference between the continuous tDCS and interrupted tDCS. Conclusion: The change in cortical activity by continuous and interrupted tDCS results from an improvement in the MRCP. An interrupted tDCS may be a safe and useful modality for stimulating the cortical region.

  • PDF

Effects of Transcranial Direct Current Stimulation on the Static Balance Ability of Patients with Back Pain

  • Oh, Seung Keun;Kim, Yong Nam
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.5
    • /
    • pp.328-332
    • /
    • 2019
  • Purpose: This study examined the effects of transcranial direct current stimulation (tDCS) on the static balance ability of patients with back pain. Methods: The subjects comprised of 30 males and females in their 20s, who were divided into two groups with and without tDCS. The balance posture ratio score was calculated to determine the changes in balance ability before and after the application of tDCS using balance equipment. A paired t-test was conducted to determine the changes over time, and an independent t-test was performed to determine the changes between the groups. The significance level was set to ${\alpha}=0.05$. Results: A significant difference in the changes in the static balance ability of CTDCSG between before and after applying tDCS was observed while the subjects' eyes were open (p<0.05). A comparison between the groups after the experiments revealed significantly increased changes in CTDCSG compared to STDCSE (p<0.05). The changes in static balance ability were not significant when the subjects' eyes were closed (p>0.05). Conclusion: The application of tDCS positively changed the static balance ability of patients with back pain. The results of this study showed that tDCS could be used as an intervention to increase the static balance ability of patients with back pain in the clinical field. The study results could be used further as foundational data for future studies on tDCS.

The Effect of Electrode Size during tDCS on Hand Function (경두개직류자극 시 전극 크기가 손기능에 미치는 영향)

  • Lee, Hye-Jin;Park, Soo-Ji;Kwon, Hye-Min;Lee, Jeong-Woo
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.10 no.2
    • /
    • pp.37-42
    • /
    • 2012
  • Purpose : This study is to examine the effect of electrode size during transcranial direct current stimulation on hand function. Methods : By randomly assigning 26 right hand dominant subjects to two groups (I: carbon rubber electrode / II: disposable circular self-adhesive electrodes) with 13 subjects in each group depending on the electrode size, a positive electrodeof transcranial direct current stimulation was placed on the primary motor area (C4) and a negative electrode was placed on the left primary motor area (C3) and the stimulation was applied for 20 minutes.Hand function assessment before and after transcranial direct current stimulation were measured with JTT (Jebsen-Taylor hand function test). Results : According to hand function assessment by JTT, there were no interactions on both hands, and statistically significant differences according to time appeared in the main effect test. Conclusion : Regardless of the electrode size, it appears that transcranial direct current stimulation on the primary motor area activated hand function affected.