• 제목/요약/키워드: Transaction-based recommender system

검색결과 20건 처리시간 0.024초

트랜잭션 기반 추천 시스템에서 워드 임베딩을 통한 도메인 지식 반영 (Application of Domain Knowledge in Transaction-based Recommender Systems through Word Embedding)

  • 최영제;문현실;조윤호
    • 지식경영연구
    • /
    • 제21권1호
    • /
    • pp.117-136
    • /
    • 2020
  • In the studies for the recommender systems which solve the information overload problem of users, the use of transactional data has been continuously tried. Especially, because the firms can easily obtain transactional data along with the development of IoT technologies, transaction-based recommender systems are recently used in various areas. However, the use of transactional data has limitations that it is hard to reflect domain knowledge and they do not directly show user preferences for individual items. Therefore, in this study, we propose a method applying the word embedding in the transaction-based recommender system to reflect preference differences among users and domain knowledge. Our approach is based on SAR, which shows high performance in the recommender systems, and we improved its components by using FastText, one of the word embedding techniques. Experimental results show that the reflection of domain knowledge and preference difference has a significant effect on the performance of recommender systems. Therefore, we expect our study to contribute to the improvement of the transaction-based recommender systems and to suggest the expansion of data used in the recommender system.

사용자의 재생 시간을 이용한 멀티미디어 추천 시스템 (A Multimedia Recommender System Using User Playback Time)

  • 권형준;정동근;홍광석
    • 인터넷정보학회논문지
    • /
    • 제10권1호
    • /
    • pp.111-121
    • /
    • 2009
  • 본 논문에서는 사용자의 재생 시간을 이용한 멀티미디어 추천 시스템을 제안한다. 제안하는 시스템은 사용자에 의해 요청된 멀티미디어 콘텐츠와 그것이 재생된 시간을 기록하고, 기록된 데이터를 가지고 퍼지 연관규칙 탐사 방법을 이용하여 사용자가 관심을 보일 만한 멀티미디어 콘텐츠와 사용자에 의해 재생된 시간에 기반하여 선호 등급을 예측한다. 제안하는 방법은 사용자의 선호 정보를 별도로 입력 받지 않고도 예측된 선호 등급에 따라서 추천 목록에 대한 선호정도를 예측할 수 있으며, 거짓된 선호 정보의 유입을 방지하는 장점이 있다. 유효성 검증을 위해 제안하는 시스템을 구현하고 실험한 결과, 사용자로부터 입력 받은 선호 정보를 포함하지 않은 트랜잭션으로부터 사용자가 높은 선호도를 보일 것이라 예상되는 추천 목록을 선별하여 추천 시스템에 적용할 수 있음을 확인하였다.

  • PDF

개선된 데이터 마이닝 기술에 의한 웹 기반 지능형 추천시스템 구축 (Development of Web-based Intelligent Recommender Systems using Advanced Data Mining Techniques)

  • 김경재;안현철
    • Journal of Information Technology Applications and Management
    • /
    • 제12권3호
    • /
    • pp.41-56
    • /
    • 2005
  • Product recommender system is one of the most popular techniques for customer relationship management. In addition, collaborative filtering (CF) has been known to be one of the most successful recommendation techniques in product recommender systems. However, CF has some limitations such as sparsity and scalability problems. This study proposes hybrid cluster analysis and case-based reasoning (CBR) to address these problems. CBR may relieve the sparsity problem because it recommends products using customer profile and transaction data, but it may still give rise to scalability problem. Thus, this study uses cluster analysis to reduce search space prior to CBR for scalability Problem. For cluster analysis, this study employs hybrid genetic and K-Means algorithms to avoid possibility of convergence in local minima of typical cluster analyses. This study also develops a Web-based prototype system to test the superiority of the proposed model.

  • PDF

고객의 투자상품 선호도를 활용한 금융상품 추천시스템 개발 (Financial Products Recommendation System Using Customer Behavior Information)

  • 김효중;김성범;김희웅
    • 경영정보학연구
    • /
    • 제25권1호
    • /
    • pp.111-128
    • /
    • 2023
  • 인공지능(AI) 기술이 발전함에 따라 빅데이터 기반의 상품 선호도 추정 개인화 추천시스템에 관심이 증가하고 있는 추세이다. 하지만 개인화 추천이 적합하지 않은 경우 고객의 구매 의사를 감소시키고 심지어 금융상품의 특성상 막대한 재무적 손실로 확대될 수 있는 위험을 가지고 있다. 따라서 고객의 특성과 상품 선호도를 포괄적으로 반영한 추천시스템을 개발하는 것이 비즈니스 성과 창출과 컴플라이언스 이슈 대응에 매우 중요하다. 특히 금융상품의 경우 개인의 투자성향과 리스크 회피도에 따라 고객의 상품 선호도가 구분되므로 축적된 고객 행동 데이터를 활용하여 맞춤형 추천서비스를 제안하는 것이 필요하다. 이러한 고객의 행동 특성과 거래 내역 데이터를 사용하는 것뿐만 아니라, 고객의 인구통계정보, 자산정보, 종목 보유 정보를 포함하여 추천 시스템의 콜드 스타트 문제를 해결하고자 한다. 따라서, 본 연구는 고객의 거래 로그 기록을 바탕으로 고객의 투자성향과 같은 특성 정보와 거래 내역 및 금융상품 정보를 통해 고객별 금융상품 잠재 선호도를 도출하여 딥러닝 기반의 협업 필터링을 제안한 모형이 가장 성능 우수한 것을 확인하였다. 본 연구는 고객의 금융 투자 메커니즘을 기반으로 금융상품 거래 데이터를 통해 미거래 금융상품에 대한 예상 선호를 도출하는 추천 모델을 구축하여, 선호가 높을 것으로 예상되는 상위 상품군을 추천하는 서비스를 개발하는 것에 의의가 있다.

연관 규칙 생성 알고리즘 기반의 개인화 의류 추천 시스템 (A Personalized Clothing Recommender System Based on the Algorithm for Mining Association Rules)

  • 이종현;이석훈;김장원;백두권
    • 한국시뮬레이션학회논문지
    • /
    • 제19권4호
    • /
    • pp.59-66
    • /
    • 2010
  • 이 논문에서는 온톨로지로 표현한 트랜잭션으로부터 연관 규칙을 생성하고 이를 기반으로 추론을 수행하여 개인화 의류 추천을 제공하는 시스템을 제안한다. Onto-Apriori 알고리즘을 이용한 연관 규칙 생성은 유행에 따른 구매성향 변동을 능동적으로 분석할 수 있다. 생성된 규칙은 온톨로지에 메타 노드로 표현하고 이를 기반으로 추론함으로써 사용자의 질의에 맞는 추천 항목을 찾아낼 수 있다. 시스템을 평가하기 위하여 추론 소요시간과 추천 정확도 2가지 요소를 기준으로 시뮬레이션을 수행하여 유효성을 증명하였다.

XOnto-Apriori: 확장된 온톨로지 추론 기반의 연관 규칙 마이닝 알고리즘 (XOnto-Apriori: An eXtended Ontology Reasoning-based Association Rule Mining Algorithm)

  • 이종현;김장원;정동원;이석훈;백두권
    • 정보처리학회논문지D
    • /
    • 제18D권6호
    • /
    • pp.423-432
    • /
    • 2011
  • 이 논문에서는 연관 규칙 마이닝 알고리즘의 정확도를 향상시키기 위하여 기존 Onto-Apriori 알고리즘을 확장한 XOnto-Apriori 알고리즘을 제안한다. 기존 알고리즘은 트랜잭션 항목의 식별자만을 비교하여 지지도를 계산하기 때문에 유사한 속성을 가진 항목들간의 관계를 분석하지 못하는 문제점을 지닌다. 이러한 문제점을 해결하기 위해 제안 알고리즘은 온톨로지 추론 기반의 속성 비교를 통해 같은 식별자를 지니지 않는 항목들간의 관계성도 지지도 계산에 반영할 수 있도록 한다. 제안 알고리즘의 규칙 생성 과정을 명확히 서술하기 위해 스마트폰 어플리케이션 추천 시스템을 설계하였으며 이 시스템은 기존 알고리즘 기반의 시스템에 비해 보다 나은 속도와 정확도를 보였다.

CLASSIFICATION FUNCTIONS FOR EVALUATING THE PREDICTION PERFORMANCE IN COLLABORATIVE FILTERING RECOMMENDER SYSTEM

  • Lee, Seok-Jun;Lee, Hee-Choon;Chung, Young-Jun
    • Journal of applied mathematics & informatics
    • /
    • 제28권1_2호
    • /
    • pp.439-450
    • /
    • 2010
  • In this paper, we propose a new idea to evaluate the prediction accuracy of user's preference generated by memory-based collaborative filtering algorithm before prediction process in the recommender system. Our analysis results show the possibility of a pre-evaluation before the prediction process of users' preference of item's transaction on the web. Classification functions proposed in this study generate a user's rating pattern under certain conditions. In this research, we test whether classification functions select users who have lower prediction or higher prediction performance under collaborative filtering recommendation approach. The statistical test results will be based on the differences of the prediction accuracy of each user group which are classified by classification functions using the generative probability of specific rating. The characteristics of rating patterns of classified users will also be presented.

블로그 인텔리전스 (Blog Intelligence)

  • 김재경;김혜경;오혁
    • 한국IT서비스학회지
    • /
    • 제7권3호
    • /
    • pp.71-85
    • /
    • 2008
  • The rapid growth of blog has caused information overload where bloggers in the virtual community space are no longer able to effectively choose the blogs they are exposed to. Recommender systems have been widely advocated as a way of coping with the problem of information overload in e-business environment. Collaborative Filtering (CF) is the most successful recommendation method to date and used in many of the recommender systems. In this research, we propose a CF-based recommender system for bloggers to find their similar bloggers or preferable virtual community without burdensome search effort. For such a purpose, we apply the "Interest Value" to CF recommender systems. The Interest Value is the quantity value about users' transaction data in virtual community, and can measure the opinion of users accurately. Based on the Interest Value, the neighborhood group is generated, and virtual community list is recommended using the Community Likeness Score (ClS). Our experimental results upon real data of Korean Blog site show that the methodology is capable of dealing with the information overload issue in virtual community space. And Interest Value is proved to have the potential to meet the challenge of recommendation methodologies in virtual community space.

수명주기가 짧은 상품들에 대한 시퀀스 기반 개인화 서비스 (A sequence-based personalized service for the short life cycle products)

  • 최주철
    • 디지털융복합연구
    • /
    • 제15권12호
    • /
    • pp.293-301
    • /
    • 2017
  • 대부분의 신상품들은 시장에서 급격히 사라질 뿐만 아니라 기존 상품들의 매출감소를 불러온다. 이처럼 수명주기가 짧은 상품으로 인해 소매상들은 과다한 재고를 보유하게 될 뿐만 아니라 소비자들은 자신들의 선호를 맞는 제품들을 발견하는데 어려움을 겪는다. 이런 문제를 해결에 하는데 있어서 추천 시스템은 좋은 해결방법이 될 수 있다. 그러나 대부분의 추천 시스템들은 소비자의 고정된 선호를 이용하기 때문에 변화하는 소비자의 선호를 반영하지 못하는 문제가 있다. 이러한 문제를 해결하기 위하여 본 연구에서는 시간에 따라 변화하는 소비자의 선호를 반영한 추천 방법론을 제안하였다. 제안한 방법론은 소비자의 동적 선호 프로파일 작성, 네이버 형성, 추천 리스트 작성의 3 단계로 구성되어 있으며, 모바일 이미지 거래 데이터를 이용하여 제안된 방법론의 유용성을 검증하였다. 시험결과 제시된 방법론의 추천 정확도가 전통적인 협업필터링의 정확도 보다 높았다. 이러한 결과를 통해, 본 연구에서 제한한 방법론이 짧은 수명주기를 가진 제품을 추천하는데 효과적이라는 결론을 내릴 수 있다. 따라서 향후 제안된 방법론을 현업에 적용하여 실제적 유용성을 검증할 필요가 있다.

연관규칙기법과 분류모형을 결합한 상품 추천 시스템: G 인터넷 쇼핑몰의 사례 (The Product Recommender System Combining Association Rules and Classification Models: The Case of G Internet Shopping Mall)

  • 안현철;한인구;김경재
    • 경영정보학연구
    • /
    • 제8권1호
    • /
    • pp.181-201
    • /
    • 2006
  • 오늘날 인터넷이 확산되어감에 따라, e-CRM에 대한 관심이 증대되고 있다. 그 중에서도 특히 '추천시스템'은 e-CRM의 여러 응용분야 중에서도 실무적으로 그리고 학문적으로 가장 활발하게 연구되고 있는 분야 중 하나다. 추천을 위한 여러가지 방법들 중에서, 지금까지 주류를 이뤄온 방법들은 협동 필터링(Collaborative Filtering) 기법과 내용 기반(Content-Based) 접근법이다. 그러나 이러한 기존 방법들은 몇 가지 태생적인 한계점으로 인해 고객의 구매 이력이 많지 않은 중소형 인터넷 쇼핑몰에 적용하기 어렵다는 단점이 있다. 이에, 본 연구에서는 고객의 인구통계 및 구매정보에 2가지 데이터마이닝 기법들(연관 관계 기법과 분류 기법)을 적용하고, 이 결과를 조정 에이전트를 통해 결합하는 형태의 새로운 추천 시스템의 모형과 시스템 구조 체계를 제안한다. 제안된 연구 모형의 유용성을 검증하기 위해, 본 연구에서는 실제 사례에 적용한 웹 기반 프로토타입을 개발, 활용하였다. 프로토타입의 유용성을 실제 사용자들로부터 설문을 통해 조사해 본 결과, 본 연구에서 제안한 추천모형이 생성한 맞춤 정보가 사용자들에게 매우 유익하게 인지됨을 확인하였다.