In the studies for the recommender systems which solve the information overload problem of users, the use of transactional data has been continuously tried. Especially, because the firms can easily obtain transactional data along with the development of IoT technologies, transaction-based recommender systems are recently used in various areas. However, the use of transactional data has limitations that it is hard to reflect domain knowledge and they do not directly show user preferences for individual items. Therefore, in this study, we propose a method applying the word embedding in the transaction-based recommender system to reflect preference differences among users and domain knowledge. Our approach is based on SAR, which shows high performance in the recommender systems, and we improved its components by using FastText, one of the word embedding techniques. Experimental results show that the reflection of domain knowledge and preference difference has a significant effect on the performance of recommender systems. Therefore, we expect our study to contribute to the improvement of the transaction-based recommender systems and to suggest the expansion of data used in the recommender system.
본 논문에서는 사용자의 재생 시간을 이용한 멀티미디어 추천 시스템을 제안한다. 제안하는 시스템은 사용자에 의해 요청된 멀티미디어 콘텐츠와 그것이 재생된 시간을 기록하고, 기록된 데이터를 가지고 퍼지 연관규칙 탐사 방법을 이용하여 사용자가 관심을 보일 만한 멀티미디어 콘텐츠와 사용자에 의해 재생된 시간에 기반하여 선호 등급을 예측한다. 제안하는 방법은 사용자의 선호 정보를 별도로 입력 받지 않고도 예측된 선호 등급에 따라서 추천 목록에 대한 선호정도를 예측할 수 있으며, 거짓된 선호 정보의 유입을 방지하는 장점이 있다. 유효성 검증을 위해 제안하는 시스템을 구현하고 실험한 결과, 사용자로부터 입력 받은 선호 정보를 포함하지 않은 트랜잭션으로부터 사용자가 높은 선호도를 보일 것이라 예상되는 추천 목록을 선별하여 추천 시스템에 적용할 수 있음을 확인하였다.
Journal of Information Technology Applications and Management
/
제12권3호
/
pp.41-56
/
2005
Product recommender system is one of the most popular techniques for customer relationship management. In addition, collaborative filtering (CF) has been known to be one of the most successful recommendation techniques in product recommender systems. However, CF has some limitations such as sparsity and scalability problems. This study proposes hybrid cluster analysis and case-based reasoning (CBR) to address these problems. CBR may relieve the sparsity problem because it recommends products using customer profile and transaction data, but it may still give rise to scalability problem. Thus, this study uses cluster analysis to reduce search space prior to CBR for scalability Problem. For cluster analysis, this study employs hybrid genetic and K-Means algorithms to avoid possibility of convergence in local minima of typical cluster analyses. This study also develops a Web-based prototype system to test the superiority of the proposed model.
인공지능(AI) 기술이 발전함에 따라 빅데이터 기반의 상품 선호도 추정 개인화 추천시스템에 관심이 증가하고 있는 추세이다. 하지만 개인화 추천이 적합하지 않은 경우 고객의 구매 의사를 감소시키고 심지어 금융상품의 특성상 막대한 재무적 손실로 확대될 수 있는 위험을 가지고 있다. 따라서 고객의 특성과 상품 선호도를 포괄적으로 반영한 추천시스템을 개발하는 것이 비즈니스 성과 창출과 컴플라이언스 이슈 대응에 매우 중요하다. 특히 금융상품의 경우 개인의 투자성향과 리스크 회피도에 따라 고객의 상품 선호도가 구분되므로 축적된 고객 행동 데이터를 활용하여 맞춤형 추천서비스를 제안하는 것이 필요하다. 이러한 고객의 행동 특성과 거래 내역 데이터를 사용하는 것뿐만 아니라, 고객의 인구통계정보, 자산정보, 종목 보유 정보를 포함하여 추천 시스템의 콜드 스타트 문제를 해결하고자 한다. 따라서, 본 연구는 고객의 거래 로그 기록을 바탕으로 고객의 투자성향과 같은 특성 정보와 거래 내역 및 금융상품 정보를 통해 고객별 금융상품 잠재 선호도를 도출하여 딥러닝 기반의 협업 필터링을 제안한 모형이 가장 성능 우수한 것을 확인하였다. 본 연구는 고객의 금융 투자 메커니즘을 기반으로 금융상품 거래 데이터를 통해 미거래 금융상품에 대한 예상 선호를 도출하는 추천 모델을 구축하여, 선호가 높을 것으로 예상되는 상위 상품군을 추천하는 서비스를 개발하는 것에 의의가 있다.
이 논문에서는 온톨로지로 표현한 트랜잭션으로부터 연관 규칙을 생성하고 이를 기반으로 추론을 수행하여 개인화 의류 추천을 제공하는 시스템을 제안한다. Onto-Apriori 알고리즘을 이용한 연관 규칙 생성은 유행에 따른 구매성향 변동을 능동적으로 분석할 수 있다. 생성된 규칙은 온톨로지에 메타 노드로 표현하고 이를 기반으로 추론함으로써 사용자의 질의에 맞는 추천 항목을 찾아낼 수 있다. 시스템을 평가하기 위하여 추론 소요시간과 추천 정확도 2가지 요소를 기준으로 시뮬레이션을 수행하여 유효성을 증명하였다.
이 논문에서는 연관 규칙 마이닝 알고리즘의 정확도를 향상시키기 위하여 기존 Onto-Apriori 알고리즘을 확장한 XOnto-Apriori 알고리즘을 제안한다. 기존 알고리즘은 트랜잭션 항목의 식별자만을 비교하여 지지도를 계산하기 때문에 유사한 속성을 가진 항목들간의 관계를 분석하지 못하는 문제점을 지닌다. 이러한 문제점을 해결하기 위해 제안 알고리즘은 온톨로지 추론 기반의 속성 비교를 통해 같은 식별자를 지니지 않는 항목들간의 관계성도 지지도 계산에 반영할 수 있도록 한다. 제안 알고리즘의 규칙 생성 과정을 명확히 서술하기 위해 스마트폰 어플리케이션 추천 시스템을 설계하였으며 이 시스템은 기존 알고리즘 기반의 시스템에 비해 보다 나은 속도와 정확도를 보였다.
In this paper, we propose a new idea to evaluate the prediction accuracy of user's preference generated by memory-based collaborative filtering algorithm before prediction process in the recommender system. Our analysis results show the possibility of a pre-evaluation before the prediction process of users' preference of item's transaction on the web. Classification functions proposed in this study generate a user's rating pattern under certain conditions. In this research, we test whether classification functions select users who have lower prediction or higher prediction performance under collaborative filtering recommendation approach. The statistical test results will be based on the differences of the prediction accuracy of each user group which are classified by classification functions using the generative probability of specific rating. The characteristics of rating patterns of classified users will also be presented.
The rapid growth of blog has caused information overload where bloggers in the virtual community space are no longer able to effectively choose the blogs they are exposed to. Recommender systems have been widely advocated as a way of coping with the problem of information overload in e-business environment. Collaborative Filtering (CF) is the most successful recommendation method to date and used in many of the recommender systems. In this research, we propose a CF-based recommender system for bloggers to find their similar bloggers or preferable virtual community without burdensome search effort. For such a purpose, we apply the "Interest Value" to CF recommender systems. The Interest Value is the quantity value about users' transaction data in virtual community, and can measure the opinion of users accurately. Based on the Interest Value, the neighborhood group is generated, and virtual community list is recommended using the Community Likeness Score (ClS). Our experimental results upon real data of Korean Blog site show that the methodology is capable of dealing with the information overload issue in virtual community space. And Interest Value is proved to have the potential to meet the challenge of recommendation methodologies in virtual community space.
대부분의 신상품들은 시장에서 급격히 사라질 뿐만 아니라 기존 상품들의 매출감소를 불러온다. 이처럼 수명주기가 짧은 상품으로 인해 소매상들은 과다한 재고를 보유하게 될 뿐만 아니라 소비자들은 자신들의 선호를 맞는 제품들을 발견하는데 어려움을 겪는다. 이런 문제를 해결에 하는데 있어서 추천 시스템은 좋은 해결방법이 될 수 있다. 그러나 대부분의 추천 시스템들은 소비자의 고정된 선호를 이용하기 때문에 변화하는 소비자의 선호를 반영하지 못하는 문제가 있다. 이러한 문제를 해결하기 위하여 본 연구에서는 시간에 따라 변화하는 소비자의 선호를 반영한 추천 방법론을 제안하였다. 제안한 방법론은 소비자의 동적 선호 프로파일 작성, 네이버 형성, 추천 리스트 작성의 3 단계로 구성되어 있으며, 모바일 이미지 거래 데이터를 이용하여 제안된 방법론의 유용성을 검증하였다. 시험결과 제시된 방법론의 추천 정확도가 전통적인 협업필터링의 정확도 보다 높았다. 이러한 결과를 통해, 본 연구에서 제한한 방법론이 짧은 수명주기를 가진 제품을 추천하는데 효과적이라는 결론을 내릴 수 있다. 따라서 향후 제안된 방법론을 현업에 적용하여 실제적 유용성을 검증할 필요가 있다.
오늘날 인터넷이 확산되어감에 따라, e-CRM에 대한 관심이 증대되고 있다. 그 중에서도 특히 '추천시스템'은 e-CRM의 여러 응용분야 중에서도 실무적으로 그리고 학문적으로 가장 활발하게 연구되고 있는 분야 중 하나다. 추천을 위한 여러가지 방법들 중에서, 지금까지 주류를 이뤄온 방법들은 협동 필터링(Collaborative Filtering) 기법과 내용 기반(Content-Based) 접근법이다. 그러나 이러한 기존 방법들은 몇 가지 태생적인 한계점으로 인해 고객의 구매 이력이 많지 않은 중소형 인터넷 쇼핑몰에 적용하기 어렵다는 단점이 있다. 이에, 본 연구에서는 고객의 인구통계 및 구매정보에 2가지 데이터마이닝 기법들(연관 관계 기법과 분류 기법)을 적용하고, 이 결과를 조정 에이전트를 통해 결합하는 형태의 새로운 추천 시스템의 모형과 시스템 구조 체계를 제안한다. 제안된 연구 모형의 유용성을 검증하기 위해, 본 연구에서는 실제 사례에 적용한 웹 기반 프로토타입을 개발, 활용하였다. 프로토타입의 유용성을 실제 사용자들로부터 설문을 통해 조사해 본 결과, 본 연구에서 제안한 추천모형이 생성한 맞춤 정보가 사용자들에게 매우 유익하게 인지됨을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.