• Title/Summary/Keyword: Tranexamate

Search Result 3, Processing Time 0.015 seconds

Gd-complexes of DTPA-bis(amide) Conjugates of Phosphonated Tranexamic Esters as MRI Contrast Agents

  • Patel, Mehul A.;Kim, Hee-Kyung;Lee, Gang-Ho;Chang, Yong-Min;Kim, Tae-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.1022-1026
    • /
    • 2011
  • The syntheses of DTPA-bis(amide) conjugates of phosphonated cyclohexane moieties (5a-d) and their Gd(III) complexes of the type $[Gd(L)(H_2O)]{\cdot}nH_2O$ (6a-d; L = 5a-d) are described. All new compounds have been characterized by microanalysis and spectroscopic techniques. High $r_1$ relaxivities of aqueous solutions of 6a-d are observed to be in the range of $10.7-18.3\;mM^{-1}sec^{-1}$, which compare much better than that of $Omniscan^{(R)}$ ($r_1=3.90\;mM^{-1}sec^{-1}$).

Gadolinium Complex of 1,4,7,10-Tetraazacyclododecane-N,N',N'',N'''-1,4,7-trisacetic Acid (DO3A) Conjugate of Tranexamates: A Quest for a Liver-specific Magnetic Resonance Imaging Contrast Agent

  • Nam, Ki-Soo;Jeong, Hyun-Jeong;Kim, Hee-Kyung;Choi, Garam;Suh, Kyung-Jin;Chang, Yongmin;Kim, Tae-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.87-92
    • /
    • 2014
  • The work is directed toward the synthesis of a series of DO3A conjugates of tranexamates (1c-e) and their Gd complexes (2c-e) for use as a liver-specific MRI CA. All these complexes show thermodynamic and kinetic stabilities comparable to those of structurally related clinical agents such as Dotarem$^{(R)}$. Their $R_1$ relaxivities also compare well with those of commercial agent, ranging 3.68-4.84 $mM^{-1}s^{-1}$. In vivo MR images of mice with 2a-e reveal that only 2a exhibits liver-specificity. Although 2b and 2c show strong enhancement in liver, yet no bile-excretion is observed to be termed as a liver-specific agent. The rest behaves much like ordinary ECF CAs like Dotarem$^{(R)}$. The new series possess no toxicity to be employed in vivo.

Determination of Correlation Times of New Paramagnetic Gadolinium MR Contrast Agents by EPR and 17O NMR

  • Kim, Hee-Kyung;Lee, Gang-Ho;Kim, Tae-Jeong;Chang, Yong-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.849-852
    • /
    • 2009
  • The work describes EPR and 17O NMR measurements followed by theoretical calculation of the rotational correlation time $({\tau}_R)$, the water residence time $({\tau}_m)$, and the longitudinal electronic spin relaxation time $(T_{le})$(T_1e) for two new gadolinium complexes 1 and 2 of the type [$Gd(L)(H_2O)$] (L = tranexamic esters) in order to investigate their efficiency as a paramagnetic contrast agent (PCA). Of three correlation times, τR plays a major and predominant role to the unusually high relaxivity of 1 and 2 as compared with that of clinically approved MR CAs such as [$Gd(DTPA)(H_2O)]2‐ (Magnevist${\circledR}$), [Gd(DTPA-BMA)(H2O)] (Omniscan${\circledR}$), and $[Gd(DOTA)(H_2O)]^-$ (Dotarem${\circledR}$). The presence of bulky tranexamic ester in the ligand seems to be responsible for the conformational rigidity, which in turn causes such great an increase in ${\tau}_R$.