• Title/Summary/Keyword: Trajectory of the body parts

Search Result 7, Processing Time 0.023 seconds

The Relationship among Stride Parameters, Joint Angles, and Trajectories of the Body Parts during High-Heeled Walking of Woman

  • Park, Sumin;Lee, Minho;Park, Jaeheung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.245-252
    • /
    • 2013
  • Objective: This paper analyzes the changes on stride parameters, joint angles, and trajectories of the body parts due to high heels during walking and explains the causal relationship between the changes and high heels. Background: This study aims to indicate the comprehensive gait changes by high heels on the whole body for women wearing high heels and researchers interested in high-heeled walking. Method: The experiment was designed in which two different shoe heel heights were used for walking (1cm, 9.8cm), and twelve women participated in the test. In the experiment, 35 points on the body were tracked to extract the stride parameters, joint angles, and trajectories of the body parts. Results: Double support time increased, but stride length decreased in high-heeled walking. The knee inflexed more at stance phase and the spine rotation became more severe. The trajectories of the pelvis, the trunk and the head presented outstanding fluctuations in the vertical direction. Conclusion: The double support time and the spine rotation were changed to compensate instability by high heels. Reduced range of motion of the ankle joint influenced on the stride length, the knee flexion, and fluctuations of the body parts. Application: This study can provide an insight of the gait changes by high heels through the entire body.

PREDICTION OF AERODYNAMIC HEATING ON A SUPERSONIC MISSILE (초음속 유도탄 공력가열 예측)

  • Sun, Chul;Ahn, C.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.134-137
    • /
    • 2007
  • Aero-Heating phenomenon is one of the severe problems occurring in high speed missile flight. in the high speed flight, not only stagnation point but also aft body parts encounter high temperature related structural problems. But the phenomenon is not easy to predict accurately because unsteady calculation according to a flight trajectory is needed, and takes much time. In this Paper, a fast and precise scheme is introduced, which calculates heat flow and temperature by simple pressure field prediction on a missile.

  • PDF

Trajectory Tracking Control of the Wheeled Inverse Pendulum Type Self - Contained Mobile Robot in Two Dimensional Plane (역진자형 자주로보트의 2차원 평면에서 궤도주행제어에 관한 연구)

  • 하윤수;유영호;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.5
    • /
    • pp.44-53
    • /
    • 1993
  • In this paper, we discuss on the control algorithm to make the wheeled inverse pendulum type mobile robot move in two dimensional plane. The robot considered in this paper has two independently driven wheels in same axel which suport and move it-self, and is assumed to have the fyro type sensor to know the inclination algle of the body and rotary encoders to know wheel's rotation angular velocity. The control algorithm is divided into three parts. The first part is for the posture and velocity control for forward-backward direction, the second is the steering control, and the last part is for the control of total system to track the given trajectory. We handle the running velocity control of the robot as part of the posture control to keep the balance because the posture relates deeply with the velocity and can be controlled by the velocities of the wheels. The control problem is analyzed as the tracking control, and the controller is realized with the state feedback and feed-forward of the reference velocity. Constructing the control system which contained one intergrator in forward path, we also realized the control system without observer for the estimation of the accumulated errors in the inclination angle of the body. To prevent the robot from being unstable state by sudden variation of the reference velocity when it starts and stops, or changes velocity, the reference velocity of which acceleration is slowly changing, is ordered to the robot. To control its steering, we give the different reference velocities for both wheels which are calculated from the desired angular velocity of the body. Finally, we presents the experimental results of the experimental robot Yamabico Kurara in which the proposed control algorithm had been implemented.

  • PDF

Generating Augmented Lifting Player using Pose Tracking

  • Choi, Jong-In;Kim, Jong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.5
    • /
    • pp.19-26
    • /
    • 2020
  • This paper proposes a framework for creating acrobatic scenes such as soccer ball lifting using various users' videos. The proposed method can generate a desired result within a few seconds using a general video of user recorded with a mobile phone. The framework of this paper is largely divided into three parts. The first is to analyze the posture by receiving the user's video. To do this, the user can calculate the pose of the user by analyzing the video using a deep learning technique, and track the movement of a selected body part. The second is to analyze the movement trajectory of the selected body part and calculate the location and time of hitting the object. Finally, the trajectory of the object is generated using the analyzed hitting information. Then, a natural object lifting scenes synchronized with the input user's video can be generated. Physical-based optimization was used to generate a realistic moving object. Using the method of this paper, we can produce various augmented reality applications.

Searching Human Motion Data by Sketching 3D Trajectories (3차원 이동 궤적 묘사를 통한 인간 동작 데이터 검색)

  • Lee, Kang Hoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.19 no.2
    • /
    • pp.1-8
    • /
    • 2013
  • Captured human motion data has been widely utilized for understanding the mechanism of human motion and synthesizing the animation of virtual characters. Searching for desired motions from given motion data is an important prerequisite of analyzing and editing those selected motions. This paper presents a new method of content-based motion retrieval without the need of additional metadata such as keywords. While existing search methods have focused on skeletal configurations of body pose or planar trajectories of locomotion, our method receives a three-dimensional trajectory as its input query and retrieves a set of motion intervals in which the trajectories of body parts such as hands, foods, and pelvis are similar to the input trajectory. In order to allow the user to intuitively sketch spatial trajectories, we used the Leap Motion controller that can precisely trace finger movements as the input device for our experiments. We have evaluated the effectiveness of our approach by conducting a user study in which the users search for dozens of pre-selected motions from baseketball motion data including a variety of moves such as dribbling and shooting.

Moving object segmentation and tracking using feature based motion flow (특징 기반 움직임 플로우를 이용한 이동 물체의 검출 및 추적)

  • 이규원;김학수;전준근;박규태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.1998-2009
    • /
    • 1998
  • An effective algorithm for tracking rigid or non-rigid moving object(s) which segments local moving parts from image sequence in the presence of backgraound motion by camera movenment, predicts the direction of it, and tracks the object is proposed. It requires no camera calibration and no knowledge of the installed position of camera. In order to segment the moving object, feature points configuring the shape of moving object are firstly selected, feature flow field composed of motion vectors of the feature points is computed, and moving object(s) is (are) segmented by clustering the feature flow field in the multi-dimensional feature space. Also, we propose IRMAS, an efficient algorithm that finds the convex hull in order to cinstruct the shape of moving object(s) from clustered feature points. And, for the purpose of robjst tracking the objects whose movement characteristics bring about the abrupt change of moving trajectory, an improved order adaptive lattice structured linear predictor is used.

  • PDF

A study for semi-static quadruped walking robot using wave gait (물결걸음새를 이용한 준정적 4족 보행로봇에 관한 연구)

  • 최기훈;김태형;유재명;김영탁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.551-554
    • /
    • 2001
  • A necessity of remote control robots or various searching robots etc. that accomplish works given instead of human under long distance and extreme environment such as volcano, universe, deep-sea exploration and nuclear power plant etc. is increasing, and so the development and the research regarding these mobile robots are actively progressing. The wheel mobile robot or the track mobile robot have a sufficient energy efficiency under this en, but also have a lot of limits to accomplish works given which are caused from the restriction of mobile ability. Therefore, recently many researches for the walking robot with superior mobility and energy efficiency on the terrain, which is uneven or where obstacles, inclination and stairways exist, have been doing. The research for these walking robots is separated into fields of mechanism and control system, gait research, circumference environment and system condition recognition etc. greatly. It is a research field that the gait research among these is the centralist in actual implementation of walking robot unlike different mobile robots. A research field for gait of walking robot is classified into two parts according to the nature of the stability and the walking speed, static gait or dynamic gait. While the speed of a static gait is lower than that of a dynamic gait, a static gait which moves the robot to maintain a static stability guarantees a superior stability relatively. A dynamic gait, which make the robot walk controlling the instability caused by the gravity during the two leg supporting period and so maintaining the stability of the robot body spontaneously, is suitable for high speed walking but has a relatively low stability and a difficulty in implementation compared with a static gait. The quadruped walking robot has a strong point that can embody these gaits together. In this research, we will develope an autonomous quadruped robot with an asaptibility to the environment by selectry appropriate gait, element such as duty factor, stride, trajectory, etc.

  • PDF