• Title/Summary/Keyword: Trajectory Tracking Control

Search Result 517, Processing Time 0.027 seconds

Trajectory tracking control system of unmanned ground vehicle (무인자동차 궤적 추적 제어 시스템에 관한 연구)

  • Han, Ya-Jun;Kang, Chin-Chul;Kim, Gwan-Hyung;Tac, Han-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1879-1885
    • /
    • 2017
  • This paper discusses the trajectory tracking system of unmanned ground vehicles based on predictive control. Because the unmanned ground vehicles can not satisfactorily complete the path tracking task, highly efficient and stable trajectory control system is necessary for unmanned ground vehicle to be realized intelligent and practical. According to the characteristics of unmanned vehicle, this paper built the kinematics tracking models firstly. Then studied algorithm solution with the tools of the optimal stability analysis method and proposed a tracking control method based on the model predictive control. The controller used a kinematics-based prediction model to calculate the predictive error. This controller helps the unmanned vehicle drive along the target trajectory quickly and accurately. The designed control strategy has the true robustness, simplicity as well as generality for kinematics model of the unmanned vehicle. Furthermore, the computer Simulink/Carsim results verified the validity of the proposed control method.

Robust Trajectory Tracking Control of a Mecanum Wheeled Mobile Robot Using Impedance Control and Integral Sliding Mode Control (임피던스 제어와 적분 슬라이딩 모드 제어를 이용한 메카넘 휠 이동로봇의 강인한 궤도 추적 제어)

  • Woo, Cheolmin;Lee, Min-uk;Yoon, Tae-sung
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.4
    • /
    • pp.256-264
    • /
    • 2018
  • Unlike normal wheels, the Mecanum wheel enables omni-directional movement regardless of the orientation of a mobile robot. In this paper, a robust trajectory tracking control method is developed based on the dynamic model of the Mecanum wheel mobile robot in order that the mobile robot can move along the given path in the environment with disturbance. The method is designed using the impedance control to make the mobile robot to track the path, and the integral sliding mode control for robustness to disturbance. The good performance of the proposed method is verified using the MATLAB /Simulink simulation and also through the experiment on an actual Mecanum wheel mobile robot. In both the simulation and the experimentation, we make the mobile robot move along a reference trajectory while maintaining the robot's orientation at a constant angle to see the characteristics of the Mecanum wheel.

Simplification and Scaling of Iterative Learning Control Command (반복학습제어 명령의 간단화와 스케일링)

  • Chae, Hui-Chang;Lee, Sang-Hoon;Park, Myung-Kwan;Suh, Il-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2390-2392
    • /
    • 2003
  • ILC(Iterative Learning Control: 이하 ILC)는 현재 기계, 전기, 화학 등 많은 분야에 널리 적용되고 있다. ILC는 특히 반복적인 trajectory tracking Control 문제에 아주 효과적인 방법 중의 하나이다. 하지만 ILC는 메모리 기반의 scheme로서 trajectory tracking을 위해서는 많은 메모리를 요구하게 된다. 한편, 자세한 관찰에 의하면 인간의 팔, 다리 등의 관절의 움직임은 아주 정확하지가 않다. 이러한 사실로 미루어 인간이 정화한 모션을 취하는데 드는 비용을 줄이고자 모션 명령을 간단히 한다는 가정을 추론 해 낼 수 있다. 이러한 가정에 기초하여 우리는 ILC 명령을 간단히 하기 위해서 약간의 trajectory tracking의 정확성을 회생하는 메커니즘을 제안한다. 간단해진 ILC 명령은 적은 메모리 공간에 저장될 것이다. 또한, 로봇의 trajectory tracking을 위한 기존의 방법들은 아주 복잡할 뿐만 아니라 하나의 task의 수행만이 가능할 뿐 어떤 일반화의 방법도 제시하지 못하고 있다. 그래서 본 논문에서는 ILC 명령의 scaling에 대한 메커니즘을 제공하여 하나의 trajectory에 대해서 비슷한 모양이지만 다른 크기와 속도를 가지는 trajectory를 구현 할 수 있도록 하였다.

  • PDF

MPC Based Feedforward Trajectory for Pulling Speed Tracking Control in the Commercial Czochralski Crystallization Process

  • Lee Kihong;Lee Dongki;Park Jinguk;Lee Moonyong
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.252-257
    • /
    • 2005
  • In this work, we propose a simple but efficient method to design a target temperature trajectory for pulling speed tracking control of the crystal grower in the Czochralski crystallization process. In the suggested method, the model predictive control strategy is used to incorporate the complex dynamic effect of the heater temperature on the pulling speed into the temperature trajectory design quantitatively. The feedforward trajectories designed by the proposed method were implemented on 200 mm and 300 mm silicon crystal growers in the commercial Czochralski process. The application results have demonstrated its excellent and consistent tracking performance of pulling speed along whole bulk crystal growth.

Unmanned Navigation of Vehicle Using the Ultrasonic Satellite System (초음파 위치인식 시스템을 이용한 차량의 무인주행)

  • Kim, Su-Yong;Lee, Jung-Min;Lee, Dong-Hwal;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.875-882
    • /
    • 2007
  • In order for a vehicle to follow a predetermined trajectory accurately, its position must be estimated accurately and reliably. In this thesis, we propose trajectory tracking control methods for unmanned vehicle and a positioning system using ultrasonic wave. The positioning problem is an important part of control problem for unmanned navigation of a vehicle. Dead Reckoning is widely used for positioning of vehicle. However this method has problems because it accumulates estimation errors. We propose a new method to increase the accuracy of position estimation using the Ultrasonic Satellite System (USAT). It is shown that we will be able to estimate the position of vehicle precisely, in which errors are not accumulated. And proposed trajectory tracking control methods include both a new path planning method and a lateral control method for vehicle. The experimental results show that the proposed methods enables exact vehicle trajectory tracking even under various environmental factors.

An Intelligent Control of Mobile Robot Using Genetic Algorithm (유전자 알고리즘을 이용한 이동로봇의 지능제어)

  • 한성현
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.126-132
    • /
    • 2004
  • This paper proposed trajectory tracking control based on genetic algorithm. Trajectory tracking control scheme are real coding genetic algorithm(RCGA) and back-propagation algorithm(BPA). Control scheme ability experience proposed simulation. Stable tracking control problem of mobile robots have been studied in recent years. These studies have guaranteed stability of controller, but the performance of transient state has not been guaranteed. In some situations, constant gain controller shows overshoots and oscillations. So we introduce better control scheme using real coding genetic algorithm and neural network. Using RCGA, we can find proper gains in several situations and these gains are generalized by neural network. The generalization power of neural network will give proper gain in untrained situation. Performance of proposed controller will verity numerical simulations and the results show better performance than constant gain controller.

Robot Path Planning Method for Tracking Error Reduction (로봇의 추적오차 감소를 위한 궤적계획방법)

  • Kim, Dong-Jun;Kim, Gap-Il;Park, Yong-Sik
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.3
    • /
    • pp.143-148
    • /
    • 2001
  • A lot of robot trajectory tracking methods are proposed to enhance the tracking error, but irregular tracking errors are always accompanied and very hard to reduce it. Up to now, these irregular tracking errors are reduced by introducing more complicated control algorithms. But, it is intuitively obvious to reduce only the big errors selectively in the irregular ones for the better performance instead of using more complicated control algorithms. By the characteristics of the robot, big tracking errors of the end-effector are generated mostly due to the fast moving of joint. So, in this paper, we introduce a new method which reduce the big tracking errors by clippings the joint velocity with the constraint of given path. Using this method, desired trajectory tracking is obtained within the far reduced error bound. Also, this method is successfully applied to generate the path-constrained error reducing trajectories for 2-axis SCARA type robot.

  • PDF

Local Obstacle Avoidance of Nonholonomic Wheeled Mobile Robots in Trajectory Tracking

  • Lee, Young-Ho;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1172-1177
    • /
    • 2003
  • In this paper, we propose an obstacle avoidance technique in trajectory tracking of nonholonomic wheeled mobile robots. Input-output linearized backstepping controller is used in trajectory tracking, and repulsive type control input for obstacle avoidance is added to it. The added input is generated by fuzzy logic. And we do not add the two inputs directly but combine them via fuzzy logic, which determines the ratings of each input. Some simulations are performed to show that with the proposed algorithm, the mobile robot can track its reference trajectory even if there are multiple obstacles on the trajectory of robot.

  • PDF

Dynamic control of mobile robots using a robust.adaptive control method (강인.적응제어 방식에 의한 이동로봇의 동력학 제어)

  • 남재호;백승민;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.449-452
    • /
    • 1996
  • In this paper, a robust.adaptive control scheme is presented for precise trajectory tracking of nonholonomic mobile robots. In the controller, a set of desired trajectory is defined and used in constructing the control input which constitutes the main part of the proposed controller. The stable operating characteristics such as precise trajectory tracking, parameter estimation, disturbance suppression, tec., are shown through experiments as well as computer simulation.

  • PDF

Trajectory tracking controls for a robot manipulator with artificial muscles (인공 고무 근육을 이용한 로보트 메니퓨레이터의 선형 궤도 추적 제어)

  • ;Watanabe, Keigo;Nakamura, Masatoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.642-646
    • /
    • 1992
  • Trajectory tracking control problems are described for a two-link robot manipulator with artificial rubber muscle actuators. Under the assumption that the so-called independent joint control is applied to the control system, the dynamic model for each link is identified as a linear second-order system with time-lag by the step response. Two control laws such as the feedforward and the computed torque control methods, are experimentally applied for controlling the circular trajectory of an actual robot manipulator.

  • PDF