• Title/Summary/Keyword: Trajectory Estimation

Search Result 223, Processing Time 0.029 seconds

ON THE ROBUSTNESS OF CONTINUOUS TRAJECTORIES OF THE NONLINEAR CONTROL SYSTEM DESCRIBED BY AN INTEGRAL EQUATION

  • Nesir Huseyin;Anar Huseyin
    • The Pure and Applied Mathematics
    • /
    • v.30 no.2
    • /
    • pp.191-201
    • /
    • 2023
  • In this paper the control system described by Urysohn type integral equation is studied. It is assumed that control functions are integrally constrained. The trajectory of the system is defined as multivariable continuous function which satisfies the system's equation everywhere. It is shown that the set of trajectories is Lipschitz continuous with respect to the parameter which characterizes the bound of the control resource. An upper estimation for the diameter of the set of trajectories is obtained. The robustness of the trajectories with respect to the fast consumption of the remaining control resource is discussed. It is proved that every trajectory can be approximated by the trajectory obtained by full consumption of the control resource.

Multi-Cattle Tracking Algorithm with Enhanced Trajectory Estimation in Precision Livestock Farms

  • Shujie Han;Alvaro Fuentes;Sook Yoon;Jongbin Park;Dong Sun Park
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.23-31
    • /
    • 2024
  • In precision cattle farm, reliably tracking the identity of each cattle is necessary. Effective tracking of cattle within farm environments presents a unique challenge, particularly with the need to minimize the occurrence of excessive tracking trajectories. To address this, we introduce a trajectory playback decision tree algorithm that reevaluates and cleans tracking results based on spatio-temporal relationships among trajectories. This approach considers trajectory as metadata, resulting in more realistic and accurate tracking outcomes. This algorithm showcases its robustness and capability through extensive comparisons with popular tracking models, consistently demonstrating the promotion of performance across various evaluation metrics that is HOTA, AssA, and IDF1 achieve 68.81%, 79.31%, and 84.81%.

Trajectory Generation of a Moving Object for a Mobile Robot in Predictable Environment

  • Jin, Tae-Seok;Lee, Jang-Myung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.1
    • /
    • pp.27-35
    • /
    • 2004
  • In the field of machine vision using a single camera mounted on a mobile robot, although the detection and tracking of moving objects from a moving observer, is complex and computationally demanding task. In this paper, we propose a new scheme for a mobile robot to track and capture a moving object using images of a camera. The system consists of the following modules: data acquisition, feature extraction and visual tracking, and trajectory generation. And a single camera is used as visual sensors to capture image sequences of a moving object. The moving object is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the active camera. Uncertainties in the position estimation caused by the point-object assumption are compensated using the Kalman filter. To generate the shortest time trajectory to capture the moving object, the linear and angular velocities are estimated and utilized. The experimental results of tracking and capturing of the target object with the mobile robot are presented.

A Study on Passive Homing Trajectory for Maximizing Target Information (표적 정보량을 최대화하는 피동 호밍궤적에 관한 고찰)

  • Ra, Won-Sang;Shin, Hyo-Sang;Jung, Bo-Young;Whang, Ick-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.172-181
    • /
    • 2019
  • This paper deals with the problem of generating the energy optimal trajectory which is intended to enhance the target tracking performance of a passive homing missile. Noticing that the essence of passive target tracking is the range estimation problem, the target information gathered by passive measurements can be readily analyzed by introducing the range estimator designed in line-of-sight(LOS) frame. Moreover, for the linear filter structure of the suggested range estimator, the cost function associated with the target information is clearly expressed as a function of the line-of-sight rate. Based on this idea, the optimal missile trajectory maximizing the target information is obtained by solving the saddle point problem for an indefinite quadratic cost which consists of the target information and the energy. It is shown that, different from the previous heuristic approaches, the guidance command producing the optimal passive homing trajectory is produced by the modified proportional navigation guidance law whose navigation constant is determined by the weighting coefficient for target information cost.

Statistical Back Trajectory Analysis for Estimation of CO2 Emission Source Regions (공기괴 역궤적 모델의 통계 분석을 통한 이산화탄소 배출 지역 추정)

  • Li, Shanlan;Park, Sunyoung;Park, Mi-Kyung;Jo, Chun Ok;Kim, Jae-Yeon;Kim, Ji-Yoon;Kim, Kyung-Ryul
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.245-251
    • /
    • 2014
  • Statistical trajectory analysis has been widely used to identify potential source regions for chemically and radiatively important chemical species in the atmosphere. The most widely used method is a statistical source-receptor model developed by Stohl (1996), of which the underlying principle is that elevated concentrations at an observation site are proportionally related to both the average concentrations on a specific grid cell where the observed air mass has been passing over and the residence time staying over that grid cell. Thus, the method can compute a residence-time-weighted mean concentration for each grid cell by superimposing the back trajectory domain on the grid matrix. The concentration on a grid cell could be used as a proxy for potential source strength of corresponding species. This technical note describes the statistical trajectory approach and introduces its application to estimate potential source regions of $CO_2$ enhancements observed at Korean Global Atmosphere Watch Observatory in Anmyeon-do. Back trajectories are calculated using HYSPLIT 4 model based on wind fields provided by NCEP GDAS. The identified $CO_2$ potential source regions responsible for the pollution events observed at Anmyeon-do in 2010 were mainly Beijing area and the Northern China where Haerbin, Shenyang and Changchun mega cities are located. This is consistent with bottom-up emission information. In spite of inherent uncertainties of this method in estimating sharp spatial gradients within the vicinity of the emission hot spots, this study suggests that the statistical trajectory analysis can be a useful tool for identifying anthropogenic potential source regions for major GHGs.

Pose Estimation of 3D Object by Parametric Eigen Space Method Using Blurred Edge Images

  • Kim, Jin-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.12
    • /
    • pp.1745-1753
    • /
    • 2004
  • A method of estimating the pose of a three-dimensional object from a set of two-dimensioal images based on parametric eigenspace method is proposed. A Gaussian blurred edge image is used as an input image instead of the original image itself as has been used previously. The set of input images is compressed using K-L transformation. By comparing the estimation errors for the original, blurred original, edge, and blurred edge images, we show that blurring with the Gaussian function and the use of edge images enhance the data compression ratio and decrease the resulting from smoothing the trajectory in the parametric eigenspace, thereby allowing better pose estimation to be achieved than that obtainable using the original images as it is. The proposed method is shown to have improved efficiency, especially in cases with occlusion, position shift, and illumination variation. The results of the pose angle estimation show that the blurred edge image has the mean absolute errors of the pose angle in the measure of 4.09 degrees less for occlusion and 3.827 degrees less for position shift than that of the original image.

  • PDF

Visual Sensing of the Light Spot of a Laser Pointer for Robotic Applications

  • Park, Sung-Ho;Kim, Dong Uk;Do, Yongtae
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.216-220
    • /
    • 2018
  • In this paper, we present visual sensing techniques that can be used to teach a robot using a laser pointer. The light spot of an off-the-shelf laser pointer is detected and its movement is tracked on consecutive images of a camera. The three-dimensional position of the spot is calculated using stereo cameras. The light spot on the image is detected based on its color, brightness, and shape. The detection results in a binary image, and morphological processing steps are performed on the image to refine the detection. The movement of the laser spot is measured using two methods. The first is a simple method of specifying the region of interest (ROI) centered at the current location of the light spot and finding the spot within the ROI on the next image. It is assumed that the movement of the spot is not large on two consecutive images. The second method is using a Kalman filter, which has been widely employed in trajectory estimation problems. In our simulation study of various cases, Kalman filtering shows better results mostly. However, there is a problem of fitting the system model of the filter to the pattern of the spot movement.

An Intelligent Estimation Method of Robot-location based on Passive RFID Tags in Static Position (정적 Passive RFID 태그를 이용한 지능적인 로봇위치추정기법)

  • Moon Seung-Wuk;Ji Yong-Kwan;Park Jahng-Hyon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.1
    • /
    • pp.9-14
    • /
    • 2006
  • This paper presents methods of robot localization using recent radio frequency identification technology. If the absolute position and orientation of a tag are given in an indoor environment where RFID tags are installed, a robot can estimate its location using the relationship of the identified tag and the robot in a relative coordinate. To derive this relationship, we propose three estimation techniques using a model of a RFID reader, the direction of identification and the detection range. In this algorithm, a suitable estimation method is selected out of the three proposed techniques depending on the situations and trajectory of robot in the detection range. Simulation and experimental results show that the proposed methods can provide good performance for localization.

Fusion Filter for the Trajectory and Instantaneous Impact Point Estimation of a Satellite Launch Vehicle (위성발사체 궤도 및 순간낙하점 추정을 위한 융합필터)

  • Ryu, Seong-Sook;Kim, Jeong-Rae;Song, Yong-Kyu;Ko, Jeong-Hwan;Sim, Hyung-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.4
    • /
    • pp.295-303
    • /
    • 2008
  • Malfunction of satellite launch vehicles with high speed and long range can be a major concern for operations. Flight safety system that monitor the trajectory and identify any failure of the launch vehicles. Tracking filters for the flight safety systems are different from common tracking filters since filter reliability is more emphasized than accuracy. Reliable estimation of instantaneous impact points requires reliable velocity estimates as well as reliable position estimates. A fusion filter for a flight safety system was developed with the tracking sensor models for the Korea Satellite Launch Vehicle I. The fusion filter performances were evaluated by analyzing the trajectory and instantaneous impact point estimates.

  • PDF

Performance Requirement Analysis and Weight Estimation of Reusable Launch Vehicle using Rocket based Air-breathing Engine (로켓기반 공기흡입추진 엔진이 적용된 재사용 발사체의 요구 성능 및 중량 분석)

  • Lee, Kyung-Jae;Yang, Inyoung;Lee, Yang-Ji;Kim, Chun-Taek;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.10-18
    • /
    • 2015
  • Performance requirement analysis and weight estimation of a reusable launch vehicle with a rocket-based air-breathing engine(RBCC : Rocket Based Combined Cycle) were performed. Performance model for an RBCC engine was developed and integrated with flight trajectory model. The integrated engine-trajectory model was validated by comparing the results with those from previous research reference. Based on the new engine-trajectory model and previous research results, engine performance requirements were derived for an reusable launching vehicle with gross take-off weight of 15 tones. Dependence of the propellant amount requirement on the mode transition Mach number of the engine was also analyzed.