• Title/Summary/Keyword: Trajectory Design

Search Result 733, Processing Time 0.03 seconds

Continuous Speech Recognition based on Parmetric Trajectory Segmental HMM (모수적 궤적 기반의 분절 HMM을 이용한 연속 음성 인식)

  • 윤영선;오영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.35-44
    • /
    • 2000
  • In this paper, we propose a new trajectory model for characterizing segmental features and their interaction based upon a general framework of hidden Markov models. Each segment, a sequence of vectors, is represented by a trajectory of observed sequences. This trajectory is obtained by applying a new design matrix which includes transitional information on contiguous frames, and is characterized as a polynomial regression function. To apply the trajectory to the segmental HMM, the frame features are replaced with the trajectory of a given segment. We also propose the likelihood of a given segment and the estimation of trajectory parameters. The obervation probability of a given segment is represented as the relation between the segment likelihood and the estimation error of the trajectories. The estimation error of a trajectory is considered as the weight of the likelihood of a given segment in a state. This weight represents the probability of how well the corresponding trajectory characterize the segment. The proposed model can be regarded as a generalization of a conventional HMM and a parametric trajectory model. The experimental results are reported on the TIMIT corpus and performance is show to improve significantly over that of the conventional HMM.

  • PDF

Zero states polynomial-like trajectory (ZSPOT) generation

  • Ahn, Ki-Tak;Chung, Wan-Kyun;Youm, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1587-1592
    • /
    • 2004
  • In the area of tracking control, it is important to design not only the controllers but also the trajectories to which a system has to follow. Position in the form of the $5^{th}$ order polynomial is often used with constraints of initial and final states. Smooth ending with possible minimum time is important for many systems to be away from vibrations or jerky motions. A simple polynomial-like trajectory generation method based on zero final state constraints is suggested and named ZSPOT. The effects of suggested method are shown through experiments in which a system follows an easy and computationally light reference trajectory.

  • PDF

Parameter Sensitivity Analysis of Autonomous Robot Vehicle for Trajectory Error and Friction Force (자율 주행 반송차의 궤적 오차와 마찰력에 대한 매개 변수의 민감도 해석)

  • 김동규;박기환;김수현;곽윤근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.115-126
    • /
    • 1996
  • In order to obtain the principal design data for developing the Autonomous Robot Vehicle(ARV), Sensitivity analysis on the trajectory error and friction force with respect to the dynamic parameters is performed. In the straight motion, the trajectory error has been proved to be much affected by the mass variance of the ARV while the lateral friction force is much affected by the location of the mass center. In the curved motion, the effect of mass and moment of inertia is considered importantly. In addition, the lateral offset gives more effect than the geometric dimension of the ARV on the trajectory errors and friction force.

  • PDF

Trajectory Following Control Using Cogging Force Model in Linear Positioning System

  • Chung, Myung-Jin;Gweon, Dae-Gab
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.3
    • /
    • pp.62-68
    • /
    • 2002
  • To satisfy the requirement of the one axis linear positioning system, which is following control of the desired trajectory without following error and is the high positioning accuracy, feed-forward loop having cogging force model is proposed. In the one axis linear positioning system with linear PM motor, cogging force acting as disturbance is modeled analytically. Analytic model of cogging force is verified by result measured from positioning system constructed with linear PM motor. Measured result is very similar with proposed analytic model. Cogging force model is used as feet forward loop in control scheme of linear positioning system. Cogging force feed-forward'loop is obtained from analytic model of cogging farce. Trajectory following error is reduced from 300nm to 100nm by applying the proposed cogging farce feed-forward loop. By using analytic model of cogging force, the control scheme is simplified. Also this analytic model is applicable to calculation of characteristic value of positioning system in design process.

A Smoothed Gait Trajectory Planning of a 9-link Biped Robot (9 링크 이족로봇의 부드러운 걸음새 경로 계획)

  • Kim, Chul-Ha;Yoo, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae;Seok, Kwak-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.424-426
    • /
    • 2005
  • We propose an analytic trajectory planning method using a wavelet neural network (WNN) for a natural and stable locomotion of the 9-link biped robot. We design a appropriate locomotion, which have a kick-action, by means of a ballastic walking model condition. In this paper, a WNN is used to interpolate the trajectory planed by the analytic method. Finally, we show the proposed trajectories through the computer simulation.

  • PDF

Improvement of Computer-Aided Manufacturing (CAM) Software for Laser Machining

  • Bayesteh, Abdoleza;Ko, Junghyuk;Ahmad, Farid;Jun, Martin B.G.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.374-385
    • /
    • 2015
  • In this paper, effective and user friendly CAM software is presented that automatically generates any three dimensional complex toolpaths according to a CAD drawing. In advanced manufacturing, often it is essential to scan the sample following a complex trajectory which consists of short (few microns) and multidirectional moves. The reported CAM software offers constant velocity for all short trajectory elements and provides an efficient shift of tool path direction in sharp corners of a tool trajectory, which is vital for any laser, based precision machining. The software also provides fast modification of tool path, automatic and efficient sequencing of path elements in a complicated tool trajectory, location of reference point and automatic fixing of geometrical errors in imported drawing exchange files (DXF) or DWG format files.

PID regulator design for robot manipulators (로봇 매니퓰레이터에 대한 비례.적분.미분 조절기 설계)

  • Nam, Heon-Seong;Kim, Cheon-joong;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.647-651
    • /
    • 1992
  • This paper presents a model-based control scheme for a robot manipulator to track a desired trajectory as closely as possible in spite of a wide range of manipulator motions and parameter uncertainties of links and payload. The scheme has two components: a nominal control and a variational control. The nominal control, generated from direct calculation of the manipulator dynamics along a desired trajectory, drives the manipulator to a neighborhood of the trajectory. Then a discrete-time PID regulator is designed based on the linearized dynamic model and Linear Quadratic(LQ) method, which generates the variational control that regulates perturbations in the vicinity of the desired trajectory.

  • PDF

Kinematic Correction of n Differential Drive Mobile Robot and a Design for the Reference-Velocity Trajectory with Acceleration-Resolution Constraint on Motor Controllers (차동 구륜이동로봇의 기구학적 보정과 모터제어기의 가속도 해상도 제약을 고려한 기준속도궤적의 설계)

  • 문종우;김종수;박세승
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.498-505
    • /
    • 2002
  • Reducing odometer errors caused by kinematic imperfections in wheeled mobile robots is imestigated. Wheel diameters and wheelbase are corrected by using encoders without landmarks. A new velocity trajectory is proposed that compensates for an orientation error due to acceleration- resolution constraints on motor controllers. Based on this velocity trajectory, the wheel velocity of one out of two driven wheels may be changed by the traveled distance of the mobile robot. It is shown that a wheeled mobile robot can't move along a straight line exactly, even if kinematic correction are achieved perfectly, and this phenomenon is attributable to acceleration-resolution constraints on motor controllers. We experiment on a wheeled mobile robot with 2 d.o.f. are used in the experiment to verify the proposed scheme.

Trajectory Tracking Control System Design of Mobile Robot Based on WIPDC and ISMC (하중적분 PDC와 ISMC를 이용한 이동 로봇의 궤도 추적 제어 시스템)

  • Baek, Du-San;Park, Seung-Kyu;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1337-1338
    • /
    • 2015
  • In this paper, a new control technique using WIPDC(Weighted Integral Parallel Distributed Compensation) and ISMC(Integral Sliding Mode Control) is proposed for high performance and robust trajectory tracking control of a wheeled mobile robot. The WIPDC reduces the steady-state error by adding a weighted integral controller to the PDC. So, the trajectory tracking control using the WIPDC can obtain more accurate control performance than the PDC. And the ISMC based control input gives the mobile robot to preserve the system dynamics controlled by the WIPDC control input in spite of external disturbances. Therefore, the proposed control method shows a robust and precise trajectory tracking performance.

  • PDF

Improvement of trajectory tracking control performance by using ILC

  • Le, Dang-Khanh;Nam, Taek-Kun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1281-1286
    • /
    • 2014
  • This paper presents an iterative learning control (ILC) approach for tracking problems with specified data points that are desired points at certain time instants. To design ILC systems for such problems, unlike traditional ILC approaches, an algorithm which updates not only the control signal but also the reference trajectory at each trial will be developed. The relationship between the reference trajectory and ILC control in tracking problems where there are specified data points through which the system should pass is investigated as the rate of convergence. In traditional ILC, the desired data is stored in a tracking profile file. Due to the huge size of the data file containing the target points, it is important to reduce the computational cost. Finally, simulation results of the presented technique are mentioned and compared to other related works to confirm the effectiveness of proposed scheme.