Journal of the Korean Society of Systems Engineering
/
v.18
no.2
/
pp.94-107
/
2022
Accidents prevention and mitigation is the highest priority of nuclear power plant (NPP) operation, particularly in the aftermath of the Fukushima Daiichi accident, which has reignited public anxieties and skepticism regarding nuclear energy usage. To deal with accident scenarios more effectively, operators must have ample and precise information about key safety parameters as well as their future trajectories. This work investigates the potential of machine learning in forecasting NPP response in real-time to provide an additional validation method and help reduce human error, especially in accident situations where operators are under a lot of stress. First, a base-case SGTR simulation is carried out by the best-estimate code RELAP5/MOD3.4 to confirm the validity of the model against results reported in the APR1400 Design Control Document (DCD). Then, uncertainty quantification is performed by coupling RELAP5/MOD3.4 and the statistical tool DAKOTA to generate a large enough dataset for the construction and training of neural-based machine learning (ML) models, namely LSTM, GRU, and hybrid CNN-LSTM. Finally, the accuracy and reliability of these models in forecasting system response are tested by their performance on fresh data. To facilitate and oversee the process of developing the ML models, a Systems Engineering (SE) methodology is used to ensure that the work is consistently in line with the originating mission statement and that the findings obtained at each subsequent phase are valid.
The Journal of the Korea institute of electronic communication sciences
/
v.17
no.3
/
pp.483-490
/
2022
Malaria is a disease caused by a parasite and it is prevalent in all over the world. The usual method used to recognize malaria cells is a thick and thin blood smears examination methods, but this method requires a lot of manual calculation, so the efficiency and accuracy are very low as well as the lack of pathologists in impoverished country has led to high malaria mortality rates. In this paper, a malaria cell image recognition model using transfer learning is proposed, which consists in the feature extractor, the residual structure and the fully connected layers. When the pre-training parameters of the VGG-19 model are imported to the proposed model, the parameters of some convolutional layers model are frozen and the fine-tuning method is used to fit the data for the model. Also we implement another malaria cell recognition model without residual structure to compare with the proposed model. The simulation results shows that the model using the residual structure gets better performance than the other model without residual structure and the proposed model has the best accuracy of 97.33% compared to other recent papers.
Park, Suhyun;Kim, Hee-Gon;Hong, Jibum;Yoo, Jae-Hyung;Hong, James Won-Ki
KNOM Review
/
v.23
no.1
/
pp.34-42
/
2020
Network Function Virtualization (NFV) environment can deal with dynamic changes in traffic status with appropriate deployment and scaling of Virtualized Network Function (VNF). However, determining and applying the optimal VNF deployment is a complicated and difficult task. In particular, it is necessary to predict the situation at a future point because it takes for the process to be applied and the deployment decision to the actual NFV environment. In this paper, we randomly generate service requests in Multiaccess Edge Computing (MEC) topology, then obtain training data for machine learning model from an Integer Linear Programming (ILP) solution. We use the simulation data to train the machine learning model which predicts the optimal VNF deployment in a predefined future point. The prediction model shows the accuracy over 90% compared to the ILP solution in a 5-minute future time point.
Journal of the Korea Society of Computer and Information
/
v.27
no.10
/
pp.131-136
/
2022
There are many difficulties and inconveniences in the process of completing driving education for the disabled. Even in the content of driving education, various unpredictable unexpected situations occur during actual driving. Although education on emergency situations is being conducted in the current driving education course, education to cope with various unexpected situations is insufficient. Therefore, in this paper, we propose a Unity-based driving education simulator for the disabled. Create a simulator by composing scenarios for various unexpected situations using Unity. A simulation is conducted through the test subjects, and the coping score for the existing unexpected situation is evaluated according to the evaluation items. It was confirmed that the evaluation score of the ability to cope with unexpected situations of the proposed system was higher than that of the existing driving education simulator. If the proposed system is used, it can be expected to improve the ability to cope with unexpected situations and improve the quality of life through realistic driving experience.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.22
no.3
/
pp.9-14
/
2022
In the IoT(internet of things) where various devices can be connected, failure of essential devices may lead to a lot of economic and life losses. For reducing the losses, fault diagnosis techniques have been considered an essential part of IoT. In this paper, the method based on a graph neural network is proposed for determining fault and classifying types by extracting features from vibration data of systems. For training of the deep learning model, fault dataset are used as input data obtained from the CWRU(case western reserve university). To validate the classification performance of the proposed model, a conventional CNN(convolutional neural networks)-based fault classification model is compared with the proposed model. From the simulation results, it was confirmed that the classification performance of the proposed model outweighed the conventional model by up to 5% in the unevenly distributed data. The classification runtime can be improved by lightweight the proposed model in future works.
International Journal of Internet, Broadcasting and Communication
/
v.14
no.3
/
pp.182-192
/
2022
This study analyzed the effects of the all-in-one automatic fire shutter (hereinafter referred to as "all-in-one shutter") installed along the fire compartment in a five-story high school building on the evacuation time by using the Pathfinder simulation program. When the all-in-one shutter was added as a new variable, the evacuation time was delayed, indicating insufficient evacuation safety. The evacuation time exceeded the appropriate standard when the evacuation exit was designated to the students in the present state of being placed on the 2nd, 3rd, and 4th floors and the all-in-one shutter was activated. When students were placed on the 1st, 2nd and 3rd floors under the same conditions, the evacuation time was also greatly exceeded. However, when the width of the entrance was set to 130cm, the evacuation time was almost the same as when the all-in-one shutter was not installed. In high-rise school buildings, the bottleneck caused by all-in-one shutters is becoming a major factor in evacuation barriers. To ensure the evacuation safety of school buildings, it has been judged that evacuation education and training to predict the evacuation time required through the all-in-one shutter entrance and induce an evacuation procedure suitable for the standard evacuation time should be carried out in parallel. The implications of this study and suggestions for effective fire compartments and follow-up studies were discussed.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.8
/
pp.2278-2291
/
2023
Imported ornamental fish should be quarantined because they can have dangerous diseases depending on their habitat. The quarantine requires a lot of time because quarantine officers collect various information on the imported ornamental fish. Inefficient quarantine processes reduce its work efficiency and accuracy. Also, long-time quarantine causes the death of environmentally sensitive ornamental fish and huge financial losses. To improve existing quarantine systems, information on ornamental fish was collected and structured, and a server was established to develop quarantine performance support software equipped with a text search engine. However, the long names of ornamental fish in general can cause many typos and time bottlenecks when we type search words for the target fish information. Therefore, we need a technique that can correct typos. Typical typo character calibration compares input text with all characters in a calibrated candidate text dictionary. However, this approach requires computational power proportional to the number of typos, resulting in slow processing time and low calibration accuracy performance. Therefore, to improve the calibration accuracy of characters, we propose a fusion system of simple Artificial Neural Network (ANN) models and character preprocessing methods that accelerate the process by minimizing the computation of the models. We also propose a typo character generation method used for training the ANN models. Simulation results show that the proposed typo character correction system is about 6 times faster than the conventional method and has 10% higher accuracy.
N. Nithiyanandam;C. Mahesh;S.P. Raja;S. Jeyapriyanga;T. Selva Banu Priya
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.6
/
pp.1706-1727
/
2023
Under Water Sensor Networks (UWSN) has gained attraction among various communities for its potential applications like acoustic monitoring, 3D mapping, tsunami detection, oil spill monitoring, and target tracking. Unlike terrestrial sensor networks, it performs an acoustic mode of communication to carry out collaborative tasks. Typically, surface sink nodes are deployed for aggregating acoustic phenomena collected from the underwater sensors through the multi-hop path. In this context, UWSN is constrained by factors such as lower bandwidth, high propagation delay, and limited battery power. Also, the vulnerabilities to compromise the aquatic environment are in growing numbers. The paper proposes an Energy-Efficient standalone Intrusion Detection System (EEIDS) to entail the acoustic environment against malicious attacks and improve the network lifetime. In EEIDS, attributes such as node ID, residual energy, and depth value are verified for forwarding the data packets in a secured path and stabilizing the nodes' energy levels. Initially, for each node, three agents are modeled to perform the assigned responsibilities. For instance, ID agent verifies the node's authentication of the node, EN agent checks for the residual energy of the node, and D agent substantiates the depth value of each node. Next, the classification of normal and malevolent nodes is performed by determining the score for each node. Furthermore, the proposed system utilizes the sheep-flock heredity algorithm to validate the input attributes using the optimized probability values stored in the training dataset. This assists in finding out the best-fit motes in the UWSN. Significantly, the proposed system detects and isolates the malicious nodes with tampered credentials and nodes with lower residual energy in minimal time. The parameters such as the time taken for malicious node detection, network lifetime, energy consumption, and delivery ratio are investigated using simulation tools. Comparison results show that the proposed EEIDS outperforms the existing acoustic security systems.
Kim, Jinwook;Kim, Kwanghyun;Seon, Joonho;Lee, Seongwoo;Kim, Soo-Hyun;Kim, Jin-Young
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.22
no.6
/
pp.165-171
/
2022
Human heart rate can be used to measure exercise intensity as an important indicator. If heart rate can be predicted, exercise can be performed more efficiently by regulating the intensity of exercise in advance. In this paper, a FitRec-based prediction model is proposed for estimating running heart rate for users. Endomondo data is utilized for training the proposed prediction model. The processing algorithms for time-series data, such as LSTM(long short term memory) and GRU(gated recurrent unit), are employed to compare their performance. On the basis of simulation results, it was demonstrated that the proposed model trained with running exercise performed better than the model trained with several cardiac exercises.
Central nervous system tumors are identified as tumors of the brain and spinal cord. The associated morbidity and mortality of cerebrospinal tumors are disproportionately high compared to other malignancies. While minimally invasive techniques have initiated a revolution in neurosurgery, artificial intelligence (AI) is expediting it. Our study aims to analyze AI's role in the neurosurgical management of cerebrospinal tumors. We conducted a scoping review using the Arksey and O'Malley framework. Upon screening, data extraction and analysis were focused on exploring all potential implications of AI, classification of these implications in the management of cerebrospinal tumors. AI has enhanced the precision of diagnosis of these tumors, enables surgeons to excise the tumor margins completely, thereby reducing the risk of recurrence, and helps to make a more accurate prediction of the patient's prognosis than the conventional methods. AI also offers real-time training to neurosurgeons using virtual and 3D simulation, thereby increasing their confidence and skills during procedures. In addition, robotics is integrated into neurosurgery and identified to increase patient outcomes by making surgery less invasive. AI, including machine learning, is rigorously considered for its applications in the neurosurgical management of cerebrospinal tumors. This field requires further research focused on areas clinically essential in improving the outcome that is also economically feasible for clinical use. The authors suggest that data analysts and neurosurgeons collaborate to explore the full potential of AI.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.