Purpose: Obstacle crossing training is being used to improve the walking ability of stroke patients, but studies on which method is more effective when performing obstacle crossing training with an unaffected limb lead (OCT-ULL) and an affected limb lead (OCT-ALL) are not well known. As such, this study aims to compare the intervention effects of obstacle crossing training using unaffected limb leads (OCT-ULL) and obstacle crossing training using affected limb leads (OCT-ALL). Methods: In total, 25 patients with chronic stroke were studied and assigned randomly to the obstacle crossing training with unaffected limb leads (OCT-ULL) group or the obstacle crossing training with affected limb leads (OCT-ALL) group. A lower extremity strength test, balance and gait test, and fall efficacy test were conducted as preliminary tests, and all patients participated in the intervention for 30 minutes a day, five days a week for four weeks, and the same preliminary tests were conducted post-intervention. Results: Compared with the OCT-ALL group, the OCT-ULL group showed a significant improvement in the strength of the affected hip abductor muscle and in balance and gait, as well as in fall efficacy (p<.05). Conclusion: This study suggested that applying the OCT-ULL training method in the obstacle crossing training of stroke patients is more effective for improving balance and gait functions than OCT-ALL.
A major problem of stopwatch time study is how to do for the accurate and consistent performance rating, which is one of the critical variables to determine the accuracy of work measurement and should be still dependent upon time observer's judgement. Therefore the time observer's ability for the performance rating is very important, and must be improved by correct training method and procedure. This paper developed a new benchmark and benchmark-observation method for the effective performance rating training of assembling and machining operations. The trainees' ability in the accuracy and consistency of the performance rating ,improved significantly after being trained by subject method. The percentage improvement in rating accuracy and consistency values was 34.7% and 49% respectively. In addition, benchmark-practice method for the performance rating training is not significant, so it is proofed that the skill of a certain operation is not important for the improvement of the rating ability.
In the Vector Taylor Series (VTS)-based noisy speech recognition methods, Hidden Markov Models (HMM) are usually trained with clean speech. However, better performance is expected by training the HMM with noisy speech. In a previous study, we could find that Minimum Mean Square Error (MMSE) estimation of the training noisy speech in the log-spectrum domain produce improved recognition results, but since the proposed algorithm was done in the log-spectrum domain, it could not be used for the HMM adaptation. In this paper, we modify the previous algorithm to derive a novel mathematical relation between test and training noisy speech in the cepstrum domain and the mean and covariance of the Multi-condition TRaining (MTR) trained noisy speech HMM are adapted. In the noisy speech recognition experiments on the Aurora 2 database, the proposed method produced 10.6% of relative improvement in Word Error Rates (WERs) over the MTR method while the previous MMSE estimation of the training noisy speech produced 4.3% of relative improvement, which shows the superiority of the proposed method.
The purpose of study is to provide fundamental data for the improvement of the teacher inservice training for environmental education through analysis of current inservice training programmes. The subject of analysis are documents on training programmes which was conducted after 2000 by 10 training organizations. Based on the results of this study, inservice training programmes is classified with 6 organizations which consist of education training institute, education & scientific research institute, national · public organizations, colleges of an attached organizations, civil organizations, teacher research society. The strategies for improvement of proposed in this study can be summarized as follows: First,'60 hours training programmes for general competencies improvement of environmental teacher' have to reconsider about scarcity areas to analysis of programmes. Second, this training programmes need to establish in training programmes of nothing region for increase in training opportunity of teachers. Third,'the core training programmes'is continued to be complementing about this programmes and need to establish about training programmes of teaching method of environmental education, environmentally value and attitude, etc
The nearest neighbor classification rule is widely used because it is not only simple but the error rate is asymptotically less than twice Bayes theoretical minimum error. But the method basically use the whole training patterns as the reference vectors. so that both storage and classification time increase as the number of training patterns increases. LVQ(Learning Vector Quantization) resolved this problem by training the reference vectors instead of just storing the whole training patterns. But it is a heuristic algorithm which has no theoretic background there is no terminating condition and it requires a lot of iterations to get to meaningful result. This paper is to propose a new training method of the reference vectors. which minimize the given error function. The nearest neighbor network,the network version of the nearest neighbor classification rule is proposed. The network is funtionally identical to the nearest neighbor classification rule is proposed. The network is funtionally identical to the nearest neighbor classification rule and the reference vectors are represented by the weights between the nodes. The network is trained to minimize the error function with respect to the weights by the steepest descent method. The learning algorithm is derived and it is shown that the proposed method can adjust more reference vectors than LVQ in each iteration. Experiment showed that the proposed method requires less iterations and the error rate is smaller than that of LVQ2.
일반적으로 영상의 색은 RGB 카메라 시스템의 red, green, blue 채널들을 사용하여 재현된다. 하지만 세 채널들의 정보만으로 실제 장면의 분광 반사율을 추정하는데 한계가 있다. 이 때문에 RGB 카메라 시스템은 색을 정확하게 재현하지 못한다. 이 한계를 극복하고 정확한 색을 재현하기 위해 다채널 카메라 시스템을 사용하여 분광 반사율을 추정하는 연구들이 활발히 진행되고 있다. 최근 분광 유사도를 사용하여 카메라 응답에 따라 기존 모집단에서 유사 모집단을 적응적으로 구성하는 분광 반사율 추정법이 소개되었다. 하지만 이 방법에는 평균 거리와 최대 거리 기반의 분광 유사도가 적용되었기 때문에 유사 모집단의 정확도가 저하된다. 본 논문에서는 유사 모집단의 정확도를 향상시키기 위해 상관 계수 기반의 분광 유사도가 적용된 분광 반사율 추정법을 제안하였다. 먼저 기존 모집단과 위너(Wiener) 추정법을 통해 획득된 분광 반사율 간의 상관 계수를 계산한다. 다음으로 상관 계수에 따라 기존 모집단에서 유사 모집단을 구성한다. 마지막으로 유사 모집단이 적용된 위너 추정법을 수행하여 분광 반사율을 추정한다. 제안된 방법과 이전의 방법들의 성능을 평가하기 위해 실험 결과를 비교하였다. 그 결과, 제안한 방법이 제일 우수한 성능을 나타내었다.
International Journal of Internet, Broadcasting and Communication
/
제12권2호
/
pp.45-50
/
2020
A Language model with neural networks commonly trained with likelihood loss. Such that the model can learn the sequence of human text. State-of-the-art results achieved in various language generation tasks, e.g., text summarization, dialogue response generation, and text generation, by utilizing the language model's next token output probabilities. Monotonous and boring outputs are a well-known problem of this model, yet only a few solutions proposed to address this problem. Several decoding techniques proposed to suppress repetitive tokens. Unlikelihood training approached this problem by penalizing candidate tokens probabilities if the tokens already seen in previous steps. While the method successfully showed a less repetitive generated token, the method has a large memory consumption because of the training need a big vocabulary size. We effectively reduced memory footprint by encoding words as sequences of subword units. Finally, we report competitive results with token level unlikelihood training in several automatic evaluations compared to the previous work.
Identification is the process automatically identify who is speaking on the basis of information obtained from speech waves. In training phase, each speaker models are trained using each speaker's speech data. GMMs (Gaussian Mixture Models), which have been successfully applied to speaker modeling in text-independent speaker identification, are not efficient in insufficient training data environment. This paper proposes speaker modeling method using MLLR (Maximum Likelihood Linear Regression) method which is used for speaker adaptation in speech recognition. We make SD-like model using MLLR adaptation method instead of speaker dependent model (SD). Proposed system outperforms the GMMs in small training data environment.
Purpose : The purpose of the research is that get a cut above clinical practice effect through satisfaction of clinical training, practical training, content, oversight of training and evaluation system. Clinical training consists of part of university in Gwang Ju and Jeon nam. Method : The target of training student was studying at physiotherapy a tree or four-year-course collage in Gwang ju and Jean nam. Data collection period is from 21 November 2012 to 1 February. We explained how to do a means of collecting data and get students consent fill in questionnaire. Data collection prossed by using spss 10.1 program also independent proofs, descriptive statistics, crosstabulation, regression analysis and frequency analysis. Results : The subjects average age is 24 in general characteristic. A school system of subjects was a tree-year-course students. They were 58people(39.1%). A school system of subjects was a four-year-course students. They were 90people(60.9%).The male was 72(48.6%) and the female was 76(51.4%). We researched to know about satisfaction of clinical training, practical training, content, environment of practical establishment, trainee manage and evaluation method. All-round satisfaction of clinical training average was 1.90 Satisfaction of clinical training period and content average was 1.83Satisfaction of environment of practical establishment average was 1.88 Satisfaction of clinical training establishments' trainee manage and evaluation average was 1.94 Conclusion : It is important that student can get specific their future and can do at clinical throught clinical training after their graduation improving satisfaction of clinical training would give to impact a physical therapist reserve.
본 연구는 공무원 교육훈련정책의 상대적 중요도와 우선순위 분석을 통해 공무원교육훈련정책의 방향성을 모색해보고자 전문가들을 대상으로 AHP 방법론을 적용한 실증적 분석을 실시하였다. 연구결과를 요약해 보면 다음과 같다. 첫째, 측정영역별 평가요소에 대한 상대적 우선순위를 보면, 교육훈련운영시스템, 교육훈련프로그램, 교육인프라, 교육훈련평가관리 중에서 교육훈련운영시스템이 가장 중요한 평가요소로 분석되었다. 둘째, 평가항목의 관점에서 보면, 교육훈련프로그램에서는 Acting Learning 교육프로그램, 교육훈련운영시스템에서는 교육훈련기관 예산확충, 교육훈련평가관리에서는 교육훈련과 인사제도 연계, 교육인프라에서는 교수요원 확보 등이 상대적으로 가장 중요한 우선순위로 평가되었다. 이러한 분석결과는 공무원 교육훈련정책을 경험적으로 설명하는데 기여할 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.