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Abstract

A Language model with neural networks commonly trained with likelihood loss. Such that the model can 

learn the sequence of human text. State-of-the-art results achieved in various language generation tasks, e.g., 

text summarization, dialogue response generation, and text generation, by utilizing the language model’s next 

token output probabilities. Monotonous and boring outputs are a well-known problem of this model, yet only 

a few solutions proposed to address this problem. Several decoding techniques proposed to suppress repetitive 

tokens. Unlikelihood training approached this problem by penalizing candidate tokens probabilities if the 

tokens already seen in previous steps. While the method successfully showed a less repetitive generated token, 

the method has a large memory consumption because of the training need a big vocabulary size. We effectively 

reduced memory footprint by encoding words as sequences of subword units. Finally, we report competitive 

results with token level unlikelihood training in several automatic evaluations compared to the previous work.

Keywords: Subword units, Natural language processing, Neural language generation, Natural Language processing 

Maximum likelihood training, Unlikelihood training.

1. INTRODUCTION

Massive progress of deep learning models observed in many natural language generation tasks such as text 

summarization, dialogue response generation, and text generation. Conventionally, the model trained with 

maximum likelihood estimation objective, and the generated text produced approximated by decoding the 

sequence with top output probabilities of the model. However, the approach has been observed, giving 

monotonous content, and rarely using interesting words [1]. Furthermore, solely increasing the training data, 

purportedly does not address this problem [3]. Most of the implemented solutions are adjusted decoding 

strategies such as beam search [4, 6] or sampling strategies [1, 5]. These are only temporary solutions, while 

the main problem of the model’s predicted output probabilities remains unsolved.

Welleck et al. [2] tried to address this issue by proposing a novel training objective by adding penalizing 
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candidate words in the existing likelihood objective. Incorrect repeating words and frequent words that often 

appear in the previous context restricted by this objective, which the process called unlikelihood training. 

Despite the candidate words are efficient to compute, implemented word tokenization was making the size of 

vocabulary bloated. The word tokenization, a process of splitting text document’s words as smaller units called 

tokens, made the training required a massive amount of memory because of the large number of tokens’ vector 

representation needed to be updated.

In this paper, we conducted experiments on decreasing the vocabulary size of the model by using subword 

tokenization. We trained the token level unlikelihood model with subword tokenization. Then, we compared 

the model with the existing approach, and it showed competitive results in several evaluation metrics. The 

paper organized as follows: Section 2 talks about methodologies, Section 3 explains the experiment setups, 

Section 4 shows the experiment results, and Section 5 concludes the paper.

2. METHODOLOGIES

2.1 Subword Tokenization

Subword tokenization is a tokenization method with subword segmentation of the sentence. Compared to 

word tokenization, which segmenting the sentence as a sequence of words split by spaces in between, subword 

tokenization sees words as sequent pair of characters. This tokenization is widely used in Neural Machine

Translation systems [7, 8, 9] because of the advantages of keeping vocabulary size and number of unknown 

words minimum.

Byte-pair-encoding (BPE) [7] is a subword segmentation algorithm adapted from a compression algorithm 

[10]. BPE first initialize vocabulary with individual characters in the data. Then merge the most frequent pair 

of characters until reaching the desired vocabulary size |V|. The resulting vocabulary used to segment the input 

of the train, valid, test split. The tokenization represented rare words or symbols as a sequence of substring or 

characters. Consequently, only a small fixed size of the vocabulary was needed to encode text. Figure 1 shows 

the illustration of the segmentation of word tokenization and subword tokenization with a given input.

Figure 1. Illustration of word tokenization and BPE tokenization from the given input

2.2 Unlikelihood Training

In general, the standard approach to training a language model �� is maximum likelihood estimation (MLE), 

that try to minimize with a given sequence � = {��, ��,. . . . , ��}:
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where � is a set of samples, � is a sequence composed of tokens �� ∈ �, and �itself is defined vocabulary. A 

model ��can be defined as a joint probability distribution over a sequence of tokens:

��(�) = ∏ ��(�� | ���)
|�|
���                           (2)

The main concept of unlikelihood training [2] is reducing the probability of the model of candidate tokens. 

Given a sequence � = {��, ��,. . . . , ��} and a set of selected candidate tokens  �� = {��, . . . . , ��} for step �

defined as in general form:

���
� (�� , �

�) = −∑ ���(1 − ��(� | ���))�∈��                           (3)

■ Token Level Unlikelihood Training. The training with token level unlikelihood involved the previous 

context tokens as candidate tokens excluding the true token. The candidate tokens in token level 

unlikelihood defined as:

�� = {��, ��, . . . , ����}\{��}    (4) 

According to Welleck et al. [2], minimizing Eq. (3) with this candidate set lowering the probability of frequent 

tokens and inaccurate repeating tokens. The overall objective for token level unlikelihood training then consists 

of MLE (1) and unlikelihood losses (3) in step � as:

������
� = ����

� + � ���
�                           (5)

■ Sequence Level Unlikelihood Training. The candidate tokens in sequence level unlikelihood selected 

based on the repetitive tokens in generated sequences. The model generate a continuation 

(����, ���� , . . . , ����) ∼ ��(· | ��, ��, . . . , ��) given a prefix (�� , ��, . . . , ��) ∼ �∗ and define the 

candidate tokens for � ∈ {� + 1,� + 2, . . . , � + �}as:

���������
� = {��} if (���� , ����, . . . , �� , . . . , ����) ∈ ����� for any (� − �) = �, � ≤ � ≤ �       (6)

Finally, this training used objective Eq. (3) without likelihood objective Eq. (4). In this paper, we didn’t 

perform the sequence level unlikelihood training due to memory constraints.

3. EXPERIMENTS

For our experiments, we use the subword tokenization with BPE to encode text and applied unlikelihood 

objectives to train huge neural language models, then used as text generators to complete sentences. We 

evaluate the models with evaluations in repetition and token-level mismatch and compared with the word-level 

model of unlikelihood.
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3.1 Experiment Setups

We used Transformer architecture [11] with 16-layer, 8 attention heads, a vector embedding dimension of 

1024, and a fully-connected dimension of 4096, based on Welleck et al. [2] implementation. We train each 

model for a maximum of 286,000 updates, evaluating on the validation set and selected model state with the 

best validation perplexity. We use the WikiText-103 dataset by Merity et al. [12], a huge collection of 

Wikipedia articles. We used BPE codes of 30k to train the BPE and apply tokenization to the dataset.

3.2 Evaluation Metrics

Evaluation metrics that we used are based on Welleck et al. [2] evaluations in repetition in token level (rep)

and 4-grams sequence level (seq-rep-4), token distribution in token level (uniq) as well as sequence level (uniq-

seq), and language modeling quality with perplexity (ppl). Also, we compared the number of parameters vector 

representations needed to be updated in each model.

■ Repetition. Given a set D of length-T sequences, the evaluation for token-level repetition (rep) measures 

top-1 predictions of next-token that occur in the previous L tokens is:

���/� =
�

|�|�
∑ ∑ ���� ��� ��(� | ���): ������:���

�
����∈� (7)  

Single-token repeat defined as a predicted token when � ��� ��� ��(� | ���)is 1. For the sequence repetition 

evaluation, we use the subset of duplicate n-grams (seq-rep-n) in a generated sequence. Given a continuation 

����:���, the metric defined as:

seq-rep-n= 1.0 −
������� �������(����:���)�

|�������|
  (8)

and calculate the average over continuations. This metric increases towards 1.0 as the model repeats n-grams  

and zero when there is no repetition in the continuation. In this paper, we evaluated the model with 4-grams 

repetition metric (seq-req-4).

■ Token Distribution. We measure the predicted token distribution by the model with the numbers of unique 

tokens. We reported the token level metric (uniq) with the number of unique next-token predictions on 

validation split D. As a sequence level metric (uniq-seq), we evaluate the number of unique tokens in 

continuations of validation split D.

■ Language Modeling Quality. The accuracy (acc) of next-token prediction defined as 
�

�
|{��� ��� �(��|���) = ��

∗ | ��� ∈ � }|, with N prefixes ��� and true next tokens ��
∗. The perplexity 

(ppl) used to measure how well the model predicted the next token in validation split D. Generally, the 

perplexity defined as:

��� = �∏
�

�(�� | ���)
�
���

�
              (9)

with S as the number of tokens in the validation split D.

4. RESULTS AND DISCUSSIONS

In the initial experiment, we compared the size of vocabulary from each tokenization. From Table 1, it can 
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be seen that the word tokenization has a significant amount of vocabulary compared to BPE tokenization. The 

result of BPE tokenization’s vocabulary is 87% smaller compared to word tokenization. As a result, the model 

with BPE tokenization only needs to update around 36M parameters while the word tokenization requires to 

update 274M parameters. Also, we managed to train the model in the modern consumer GPU rather than 

industrial-grade GPUs used by Welleck et. al [2]. Despite vocabulary shrinking, the model recognized almost 

all the input in the valid and test split of the dataset without replacing it with the unknown token <unk>. 

Table 1. Comparison of vocabulary size and tokenization unknown word replaced by <unk>

token in train, valid, and test split of WikiText-103 dataset.

Tokenization Vocabulary Size
Unknown Word

Train Valid Test

Word Tokenization 267,743 0.000% 0.000% 0.000%

BPE Tokenization 36,883 0.000% 0.020% 0.001%

In the second experiment, we evaluated the models with metrics as explained in subsection 3.2. Word 

tokenization models outperformed subword tokenization with BPE models’ results. From Table 2, the word 

tokenization models trained with maximum likelihood (WordMLE) and unlikelihood (WordMLE)’s results are 

from Welleck et al. [2] model which is publicly available. SubwordMLE and SubwordUL are the subword 

tokenization model trained with maximum likelihood and unlikelihood objective respectively.

Table 2. Result for token-level objectives according to token-level metrics using the 

validation split of WikiText-103.

Model rep seq-rep-4 ppl acc uniq uniq-seq

WordMLE 0.619 0.429 24.592 0.401 11.6k 10.7k

WordUL 0.569 0.274 25.624 0.396 12.4k 12.6k

SubwordMLE 0.598 0.487 21.929 0.439 13.3k 10.3k

SubwordUL 0.546 0.290 22.152 0.421 14.1k 12.2k

The result of the subword tokenization model with both training objectives is surprisingly compelling 

compared to the word tokenization models. Similar to WordUL repetition of token level rep and sequence level 

seq-rep-4 of SubwordUL result outperformed model that trained by maximum likelihood SubwordUL with 0.052 

and 0.197 difference of respective metric. The unlikelihood training SubwordUL also improves unique token 

and sequence level generation performance (uniq 14.1k and uniq-seq 12.2k) compared to maximum likelihood 

training SubwordMLE (uniq 13.3k and uniq-seq 10.3k). Despite the unlikelihood training SubwordUL achieved 

improvement in several metrics compared to maximum likelihood training SubwordMLE, the model still 

relatively performed well in terms of perplexity (ppl 22.152 vs. 21.929).

Table 2 showed the effect of minimizing unlikelihood loss in repetition and token distribution metrics. The 

unlikelihood model with subword tokenization SubwordUL successfully suppressed the repetitive tokens in 

generation. The results exhibited the effectiveness of the token level unlikelihood objective as discussed in 

Section 2.2.

Last but not least, we also included the result of WordMLE and WordUL in Table 2 only to emphasize that the 

reduction of vocabulary is not affecting the performance.
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5. CONCLUSION

We successfully reduced vocabulary size by 87% compared to existing work with BPE subword

tokenization that leads to decreasing memory footprint. Although the size of vocabulary was significantly 

smaller to the word tokenization, the models with maximum likelihood and unlikelihood training still managed 

to obtain results across the metrics.

Finally, we need further study the effect of other subword tokenization methods as well as the minimum 

amount of vocabulary size needed. Furthermore, we need to add a metric based on human evaluations to 

measure generation quality of subword tokenization in unlikelihood training. 
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