International Journal of Internet, Broadcasting and Communication
/
v.12
no.1
/
pp.67-72
/
2020
The fifth generation (5G) mobile communication has an impact on the human life over the whole world, nowadays, through the artificial intelligence (AI) and the internet of things (IoT). The low latency of the 5G new radio (NR) access is implemented by the state-of-the art technologies, such as non-orthogonal multiple access (NOMA). This paper investigates a practical issue that in NOMA, for the practical channel models, such as fading channel environments, the successive interference cancellation (SIC) should be performed on the stronger channel users with low power allocation. Only if the SIC is performed on the user with the stronger channel gain, NOMA performs better than orthogonal multiple access (OMA). Otherwise, NOMA performs worse than OMA. Such the superiority requirement can be easily implemented for the channel being static or slow varying, compared to the block interval time. However, most mobile channels experience fading. And symbol by symbol channel estimations and in turn each symbol time, selections of the SIC-performing user look infeasible in the practical environments. Then practically the block of symbols uses the single channel estimation, which is obtained by the training sequence at the head of the block. In this case, not all the symbol times the SIC is performed on the stronger channel user. Sometimes, we do perform the SIC on the weaker channel user; such cases, NOMA performs worse than OMA. Thus, we can say that by what percent NOMA is better than OMA. This paper calculates analytically the percentage by which NOMA performs better than OMA in the practical mobile communication systems. We show analytically that the percentage for NOMA being better than OMA is only the function of the ratio of the stronger channel gain variance to weaker. In result, not always, but almost time, NOMA could perform better than OMA.
Recently due to the increasing uncertainty of the disaster environment caused by climate change the effects of disasters have become larger due to the confluence and solidification diversification into disaster type and secondary damage. In this paper, we apply ICBMS through intelligent information technology and big data analysis to all processes of disaster safety management to minimize human, social, economic and environment damage from accidents or disasters, and prevention by control technology preparation by education and training expansion to remember by body, response by advanced technology of disaster response unmanned technology restoration by creation of local community environment ecosystem, investigation and analysis by intelligent information technology learn about disaster safety management 4.0. In addition, technical limitation and problems in the $4^{th}$ industrial revolution and the application of big data were analyzed and suggested alternatives and strategies to overcome.
Market orientation emphasizes the capability of a firm to learn customers, competitors, and inter-functional coordination and to use this market intelligence of creating superior value in the marketplace. It has been proved that market orientation contributes to organizational performance. But the question is what the antecedents and consequent to superior market orientation are. The objective of this study is to assess the relationship between internal marketing and market orientation. In this study, Internal marketing consists of empowerment, internal communication, reward system, management supports, and education and training. The effects of internal marketing on market orientation were analysed by Structural equation model. Market orientation was positive affected by internal marketing, directly and indirectly. Specially, the management supports of internal marketing' constructs had relatively important effect on market orientation.
As the development of games continues, the intelligence of NPC is becoming more and more important. Nowadays, the NPCs of MMORPGS are not only capable of simple actions like moving and attacking players, but also utilizing variety of skills and tactics as human-players do. This study suggests a method that grants characters used in RPG(Role-Playing Game) an ability of training and adaptation using Neural network and Genetic Algorithm. In this study, a simple game-play model is constructed to test how suggested intellect characters could train and adapt themselves to game rules and tactics. In the game-play model, three types of characters(Tanker, Dealer, Healer) are used. Intellect character group constructed by NN and GA, and trained by combats against enemy character group constructed by FSM. As the result of test, the proposed intellect characters group acquire an appropriate combat tactics by themselves according to their abilities and those of enemies, and adapt change of game rule.
The goal of this research is to develop of an intelligent injection mold process planning system using Case-Based Reasoning. Injection mold process planning is the planning of manufacturing process to produce an injection mold economically and efficiently. Automation of the process planning is required because the problems of handmade scheduling, the difficulty of training experts for process planning, the lack of domain experts, the spread of CAD/CAM system and flexible manufacturing. This research uses Case-Based Reasoning because the injection mold process planning is devised variously and complicatedly, but the process planning of similar injection molds is very similar to each other. The system that is developed by this research uses cases that are collected in a case base when planning the process of new injection mold. New injection mold process planning is devised by retrieving a case that was made from the most similar injection mold. This research presented and composed the cases of injection mold process planning, and devised a method of search and adaptation, and developed an intelligent injection mold process planning system with the experimental results.
Kim, Yeonsu;Ko, Younghun;Euom, Ieckchae;Kim, Kyungbaek
Journal of the Korea Institute of Information Security & Cryptology
/
v.30
no.4
/
pp.669-677
/
2020
As the number of Internet users exploded, attacks on the web increased. In addition, the attack patterns have been diversified to bypass existing defense techniques. Traditional web firewalls are difficult to detect attacks of unknown patterns.Therefore, the method of detecting abnormal behavior by artificial intelligence has been studied as an alternative. Specifically, attempts have been made to apply natural language processing techniques because the type of script or query being exploited consists of text. However, because there are many unknown words in scripts and queries, natural language processing requires a different approach. In this paper, we propose a new classification model which uses byte pair encoding (BPE) technology to learn the embedding vector, that is often used for web attack payloads, and uses an attention mechanism-based Bi-GRU neural network to extract a set of tokens that learn their order and importance. For major web attacks such as SQL injection, cross-site scripting, and command injection attacks, the accuracy of the proposed classification method is about 0.9990 and its accuracy outperforms the model suggested in the previous study.
As the competition in business becomes severe, companies are focusing their capacity on customer relationship management (CRM) for survival. One of the important issues in CRM is to build a purchase prediction model, which classifies customers into either purchasing or non-purchasing groups. Until now, various techniques for building purchase prediction models have been proposed. However, they have been criticized because their performances are generally low, or it requires much effort to build and maintain them. Thus, in this study, we propose the support vector machine (SVM) a tool for building a purchase prediction model. The SVM is known as the technique that not only produces accurate prediction results but also enables training with the small sample size. To validate the usefulness of SVM, we apply it and some of other comparative techniques to a real-world purchase prediction case. Experimental results show that SVM outperforms all the comparative models including logistic regression and artificial neural networks.
Recently, the primary school training courses requires creative human being who is able to solve problem in accordance with rapidly changing society. Accordingly, it needs development of edutainment contents that can develop creativity and heighten educational effect as attracting learner's interest. This paper intends to design educational game which can develop creativity. Method of research is based on the concept of creativity and theory of multiple intelligence. First, I pulled out educational elements of edutainment game which can develop ability to solve synthetic problem and then drew interest elements of edutainment game by combined game with form of cartoon. Secondly, creativity studying area set the 5 learning area of verbal, visual, mathematical, logical and analytic creativity and then, a course of learning was designed to have each 3 details of 5 teaming areas of creativity. Finally, it presented production direction of educational game by combined with 4 elements of the interest that is an avatar, achievement of a mission, a time limit and win a point.
Evolutionary Artificial Neural Networks (EANNs) has been highly effective in Artificial Intelligence (AI) and in training NPCs in video games. When EANNs is applied to design game NPCs' smart AI which can make the game more interesting, there always comes two important problems: the more complex situation NPCs are in, the more complex structure of neural networks needed which leads to large operation cost. In this paper, the Dynamic State Evolutionary Neural Networks (DSENNs) is proposed based on EANNs which deletes or fixes the connection of the neurons to reduce the operation cost in evolution and evaluation process. Darwin Platform is chosen as our test bed to show its efficiency: Darwin offers the competitive team game playing behaviors by teams of virtual football game players.
현재 우리 군에서는 첨단과학무기를 이용한 전투력을 신속히 집중, 전환시키고 효과적으로 통합 운용해야하는 각급 제대의 지휘관 및 참모의 지휘통제능력 향상을 위하여 첨단 컴퓨터장비를 이용하여 시뮬레이션 기법을 통한 워게임 모델을 개발하여 이를 이용한 훈련을 실시하고 있다. 이 워게임 모델중 지상전투의 가장 기본이 되는 근접전투 시뮬레이션은 미국에서 개발도입된 "COBRA" 시스템을 이용하고 있으나 한국실정에 맞는 시스템으로 확장 및 유지보수가 어렵고, 상위시스템의 서브시스템으로만 운영되고있어 자체 교육훈련 및 전투분석을 위한 단독시스템으로 운영이 어려운 실정이다. 본 논문에서는 이러한 문제점을 극복하고, 방대한 양의 지식을 효율적이고 효과적으로 표현할 수 있으며 시스템의 확장 및 유지보수가 용이하고 우리실정에 적합한 전투 훈련을 실시하도록 지원하는 워게임(근접전투) 지원용 멀티미디어 전문가시스템을 개발하였다. 본 논문에서 개발한 전문가시스템은 쌍방이 부대들의 근접전투를 실시할 때 실전에서 나타날 수 있는 가능한 모든 상황의 데이터를 이용하여 전투상황을 분석하며, 기존의 획일적이고 단순한 형태로 결과를 판정하던 것을 전투원의 사기, 체력, 전투한계 등 심리적 요소까지 고려함으로써 새로이 변화되는 전쟁양상에 쉽게 적응할 수 있는 확장성 및 유지보수가 용이하며 시스템 단독으로 운영하여 반복적으로 전투를 분석하고 교육훈련을 실시하도록 함으로써 실전적이고 실질적인 근접전투 워게임지원이 가능하다. 본 논문에서는 전문가 시스템을 개발함에 있어서 지식베이스 모듈, 추론엔진 모듈 및 설명 모듈은 전문가 시스템 개발도구인 Smart Elements를 이용하여 구축하였으며, 사용자 인터페이스 모듈은 멀티미디어 저적도구인 툴북 3.0을 이용하였으며, 마지막으로 전체적인 모듈은 API를 이용 통합하여 하나의 응용소프트웨어를 생성하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.