• Title/Summary/Keyword: Train running safety

Search Result 221, Processing Time 0.022 seconds

Evaluation of Train Running Safety for Direct Fixation Concrete Track on Light Rapid Transit (경전철 직결식 콘크리트 궤도구조의 열차주행안전성 평가)

  • Choi, Jung-Youl;Kim, Jun-Hyung;Chung, Jee-Seung;Lee, Sun-Gil
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.41-46
    • /
    • 2017
  • The coefficient of derailment and the rate of wheel load reduction were used as the index of train running safety that was directly affected the train derailment safety. In aspects of track, the train running safety depends on the complex interaction between wheel and rail, and the track-vehicle conditions (i.e., the curvature, cant, track system, vehicle speed and the operation conditions, etc). In this study, the relationship between the train running safety and the track curvature and vehicle speed for direct fixation concrete tracks currently employed in Korean light rapid transit was assessed by performing field tests using actual vehicles running along the service lines. The measured dynamic wheel load, lateral wheel load and lateral displacement of rail head were measured for same train running on four tested tracks under real conditions, which included curved and tangent tracks placed on the tunnel and bridge, thus increasing the train speed by approximately maximum design speed of each test site. Therefore, the measured dynamic track response was applied to the running safety analysis in order to evaluate the coefficient of derailment, the rate of wheel load reduction and the track gauge widening at each test site, and compare with the corresponding Korean train running safety standard. As the results, the lateral track response of direct fixation concrete track appeared to increase with the decreased track curvature; therefore, it was inferred that the track curvature directly affected the train running safety.

Running safety of metro train over a high-pier bridge subjected to fluctuating crosswind in mountain city

  • Zhang, Yunfei;Li, Jun;Chen, Zhaowei;Xu, Xiangyang
    • Structural Engineering and Mechanics
    • /
    • v.76 no.2
    • /
    • pp.207-222
    • /
    • 2020
  • Due to the rugged terrain, metro lines in mountain city across numerous wide rivers and deep valleys, resulting in instability of high-pier bridge and insecurity of metro train subjected to fluctuating crosswind. To ensure the safe operation in metro lines in mountain cities, running safety of the metro train over the high-pier bridge under crosswind is analyzed in this paper. Firstly, the dynamic model of the wind-train-bridge (WTB) system is built, in which the speed-up effect of crosswind is fully considered. On the basis of time domain analysis, the basic characteristics of the WTB system with high-pier are analyzed. Afterwards, the dynamic responses varies with train speed and wind speed are calculated, and the safety zone of metro train over a high-pier bridge subjected to fluctuating crosswind in mountain city is determined. The results indicate that, fluctuating crosswind triggers drastic vibration to the metro train and high-pier bridges, which in turn causes running instability of the train. For this reason, the corresponding safety zone for metro train running on the high-pier is proposed, and the metro traffic on the high-pier bridge should be closed as the mean wind speed of standard height reaches 9 m/s (15.6 m/s for the train).

Evaluation for the Running Safety and Ride Comfort of Steel Composite Railway Bridge (강합성 철도교량의 주행안전성 및 승차감 평가)

  • Kim, Jung-Hun;Kang, Young-Jong;Kim, Dea-Hyeok;Han, Sang-Yun;Cha, Kyung-Ryul
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2814-2820
    • /
    • 2011
  • Railway bridge, contact of vehicle needs to design considering the running safety about the running train load of the railway bridge, ride comfort and dynamic safety. Also, upper structure of the railway bridge has to satisfy design standard about moving load(train). So, the railway bridge has to satisfy the requirement for vertical acceleration of the bridge deck, vertical displacement of the bridge and face distortion, which is suggested railway design standard in Korea(2011.5.). In this study, it was investigated and evaluated to the running safety about the running train load of the railway bridge, ride comfort and dynamic safety with railway design standard for steel composite(Steel Box Girder) railway bridge considering KTX, freight train and standard train load.

  • PDF

Evaluation of optimal ground motion intensity measures of high-speed railway train running safety on bridges during earthquakes

  • Liu, Xiang;Jiang, Lizhong;Xiang, Ping;Feng, Yulin;Lai, Zhipeng;Sun, Xiaoyun
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.219-230
    • /
    • 2022
  • Due to the large number of railway bridges along China's high-speed railway (HSR) lines, which cover a wide area with many lines crossing the seismic zone, the possibility of a HSR train running over a bridge when an earthquake occurs is relatively high. Since the safety performance of the train will be threatened, it is necessary to study the safety of trains running over HSR bridges during earthquakes. However, ground motion (GM) is highly random and selecting the appropriate ground-motion intensity measures (IMs) for train running safety analysis is not trivial. To deal this problem, a model of a coupled train-bridge system under seismic excitation was established and 104 GM samples were selected to evaluate the correlation between 16 different IMs and train running safety over HSR bridges during earthquakes. The results show that spectral velocity (SvT1) and displacement (SdT1) at the fundamental period of the structure have good correlation with train running safety for medium-and long-period HSR bridges, and velocity spectrum intensity (VSI) and Housner intensity (HI) have good correlation for a wide range of structural periods. Overall, VSI and HI are the optimal IMs for safety analysis of trains running over HSR bridges during earthquakes. Finally, based on VSI and HI, the IM thresholds of an HSR bridge at different speed were analyzed.

Dynamics of high-speed train in crosswinds based on an air-train-track interaction model

  • Zhai, Wanming;Yang, Jizhong;Li, Zhen;Han, Haiyan
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.143-168
    • /
    • 2015
  • A numerical model for analyzing air-train-track interaction is proposed to investigate the dynamic behavior of a high-speed train running on a track in crosswinds. The model is composed of a train-track interaction model and a train-air interaction model. The train-track interaction model is built on the basis of the vehicle-track coupled dynamics theory. The train-air interaction model is developed based on the train aerodynamics, in which the Arbitrary Lagrangian-Eulerian (ALE) method is employed to deal with the dynamic boundary between the train and the air. Based on the air-train-track model, characteristics of flow structure around a high-speed train are described and the dynamic behavior of the high-speed train running on track in crosswinds is investigated. Results show that the dynamic indices of the head car are larger than those of other cars in crosswinds. From the viewpoint of dynamic safety evaluation, the running safety of the train in crosswinds is basically controlled by the head car. Compared with the generally used assessment indices of running safety such as the derailment coefficient and the wheel-load reduction ratio, the overturning coefficient will overestimate the running safety of a train on a track under crosswind condition. It is suggested to use the wheel-load reduction ratio and the lateral wheel-rail force as the dominant safety assessment indices when high-speed trains run in crosswinds.

Analysis on Running Safety for KTX Vehicle (KTX차량의 주행 안전성 해석)

  • Kim Jae-Chul;Lee Chan-Woo;You Won-Hee
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.345-350
    • /
    • 2005
  • KTX is the high speed train which is designed for 300km/h in maximum operation speed. But its long train set may cause unstable characters as swaying of the tail of a train and when the train is running on conventional line, its running safety is a point to be considered cautiously. In this study, we evaluated the running safety by the numerical analysis using VAMPIRE and compared the result with the test result of KHST, which is being in performance tests, for verifying the validity of analysis results

  • PDF

Vibration analysis of train-bridge system with a damaged pier by flotilla collision and running safety of high-speed train

  • Xia, Chaoyi;Wang, Kunpeng;Huang, Jiacheng;Xia, He;Qi, Lin;Wu, Xuan
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.69-79
    • /
    • 2022
  • The dynamic responses of a pier-pile-soil system subjected to a barge/flotilla collision are analyzed. A coupled high-speed train and bridge system with a damaged pier after barge/flotilla collision is established by taking the additional unevenness of the track induced by the damaged pier as the self-excitation of the system. The whole process of a CRH2 high-speed train running on the 6×32 m simply-supported PC (prestressed concrete) box-girder bridge with a damaged pier is simulated as a case study. The results show that the lateral displacements and accelerations of the bridge with a damaged pier are much greater than the ones before the collision. The running safety indices of the train increase with the train speed as well as with the number of barges in the flotilla. In flotilla collision, the lateral wheel/rail forces of the train exceed the allowable values at a certain speed, which influences the running safety of the trains.

A framework for carrying out train safety evaluation and vibration analysis of a trussed-arch bridge subjected to vessel collision

  • Xia, Chaoyi;Zhang, Nan;Xia, He;Ma, Qin;Wu, Xuan
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.683-701
    • /
    • 2016
  • Safety is the prime concern for a high-speed railway bridge, especially when it is subjected to a collision. In this paper, an analysis framework for the dynamic responses of train-bridge systems under collision load is established. A multi-body dynamics model is employed to represent the moving vehicle, the modal decomposition method is adopted to describe the bridge structure, and the time history of a collision load is used as the external load on the train-bridge system. A (180+216+180) m continuous steel trussed-arch bridge is considered as an illustrative case study. With the vessel collision acting on the pier, the displacements and accelerations at the pier-top and the mid-span of the bridge are calculated when a CRH2 high-speed train running through the bridge, and the influence of bridge vibration on the running safety indices of the train, including derailment factors, offload factors and lateral wheel/rail forces, are analyzed. The results demonstrate that under the vessel collision load, the dynamic responses of the bridge are greatly enlarged, threatening the running safety of high-speed train on the bridge, which is affected by both the collision intensity and the train speed.

A Study on Running Performance the high speed line and the conventional line for KTX (고속철도 차량의 고속선 및 기존선에 대한 주행성능 검토)

  • Park Haeng-Ran;Kim Jae-Chul;Jeon Eung-Sik;Kim Nam-Po
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.192-198
    • /
    • 2004
  • KTX is the high speed train which is designed for 300km/h in maximum operation speed. But its long train set may cause unstable characters as swaying of the tail of a train and when the train is running on conventional line not on the high speed line, its funning safety is a point to be considered cautiously. In this study, we evaluated the running safety by the numerical analysis using VAMPIRE and compared the result with the test result of KHST, which is being in performance tests, for verifying the validity of analysis results.

  • PDF

Evaluation of Running Stability of Tilting Trains in Conventional Curved Track (틸팅차량의 기존선 곡선부 주행안정성 평가)

  • 엄기영;엄주환;유영화;최정호
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.367-373
    • /
    • 2004
  • The investigation of running stability of the train for curved track is necessary in view of preventing the train from derailment caused by unbalanced forces transferred from the wheel and guaranteeing moderate level of running safety in curve sections. This paper carried out an analysis of running stability of tilting trains in conventional line which the test operation of tilting trains under development are scheduled. For this purpose, the wheel load and lateral pressure to the rail are evaluated. The criteria for the calculated wheel load and derailment coefficient are compared to the design criteria for running stability. It is founded that the running stability of tilting trains for curved track is guaranteed to have sufficient safety and the train speed in curve is governed by the geometric layout of track rather than the criteria for running stability.