• Title/Summary/Keyword: Train Formation

Search Result 73, Processing Time 0.022 seconds

Numerical study of Three-Dimensional Viscous Flow and Compression Wave Induced by the High Speed Train Entering into a Tunnel (터널에 진입하는 고속전철 주위의 3차원 점성유동과 압축파 특성에 관한 수치해석적 연구)

  • Shin C. H.;Park W. G.
    • Journal of computational fluids engineering
    • /
    • v.5 no.3
    • /
    • pp.23-31
    • /
    • 2000
  • The three-dimensional unsteady compressible Full Navier-Stokes equation solver with sliding multi-block method has been applied to analyze three dimensional characteristics of the viscous flow field and compression wave around the high speed train which is entering into a tunnel. The numerical scheme of AF + ADI was used to efficiently solve Navier-Stokes equations in the curvilinear coordinate system. The vortex formation owing to the viscous interaction around the train was found and the generation of compression wave due to the blockage effects was observed ahead of the train in the form of plane wave. The three dimensional characteristics of the flow field compared to the analytic results were discussed in detail. The variation of pressure of tunnel wall surface and velocity profile of the train are identified as the train enters into a tunnel. The changes in aerodynamic forces and streamlines of each specific sections are also discussed.

  • PDF

Dynamic Analysis of KTX Vibration at the Tail of the Train (KTX 차량 후미진동 해석(I))

  • 강부병;김영우;왕영용
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.2
    • /
    • pp.122-128
    • /
    • 2003
  • The acceptance test of KTX has been performed in Korea. During the test, lateral vibration of carbody over the accepted value called sway was found. Many activities have been taken to find the cause of the vibration and the counter-measure. KTX has 20 car trainset formation whose trailer cars are linked by articulate bogies. So this study is performed to see the effects of long trainset formation on vehicle dynamics and the train stability by 16 car vehicle model. Firstly the reliable vehicle model which shows well the tendencies appeared in the tests on the high speed test line is required to find the cause of lateral vibration and the countermeasure. Vehicle model was made for the analysis with VAMPIRE. The analysis results show that secondary air spring lateral stiffness is the most significant parameter to cause carbody lateral vibration. Mode analysis results show that the least damped mode shape is similar to the vibration pattern shown in the tests that the amplitude of the motion increases along the train set and decreases in the tail part. The lateral vibration was "appeared at the speed range between 100km/h and 200km/h and disappeared at the low speed and the high speed.

Numerical study of Three-Dimensional Characteristics of Flow Field and Compression Wave Induced by High Speed Train Entering into a Tunnel (터널에 진입하는 고속전철에 의한 3차원 점성유동과 압축파 특성에 관한 수치해석적 연구)

  • Shin C. H.;Park W. G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.91-98
    • /
    • 2000
  • The three-dimensional unsteady compressible Full Navier-Stokes equation solver with sliding multi-block method has been applied to analyze three dimensional characteristics of the flow field and compression wave around the high speed train which Is entering into a tunnel. The numerical scheme of AF + ADI was used to efficiently solve Navier-Stokes equations in the curvilinear coordinate system. The vortex formation around the nose region was found and the generation of compression wave due to the blockage effects was observed ahead of the train in the form of plane wave. The three dimensional characteristics of the flow field compared to the analytic results were discussed in detail. The variation of pressure of tunnel wall surface and velocity profile of the train are identified as the train enters into a tunnel. The changes in aerodynamic forces and streamlines of each specific sections are also discussed and presented.

  • PDF

A Study on the Propulsion and Braking Performance of the High Speed Freight Train with Composing the Rolling Stocks Formation (차량편성구성에 따른 고속화물열차의 추진 및 제동성능 분석 연구)

  • Han, Seong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.298-302
    • /
    • 2016
  • Currently, logistics are in small quantities and in diverse forms, and the amounts are continuously increasing. Railway logistics however are losing their market share every year mainly due to low operation speed and loading time, which means the trucks are covering the most of the freights. In order to solve these situations, this paper proposed the high speed freight train as working multi-modality with other modes to make effective transshipment. The high speed freight train has maximum operation speed of 300km/h and electric power to run centralized power supply. There are large dual door system, bogie system covering fluctuating load of 15[ton], automatic loading device, ULD(unit load device) bed and ULD locking system in this freight rolling stock. We calculated the performance of powering and braking capacity for this train and proposed how many vehicles are composed of train set. The results in this paper can help to make a decision to define the technical specification of High-speed freight train for the efficiency of rail freight service.

Analysis of Aerodynamic Noise at Inter-coach Space of High Speed Trains

  • Kim, Tae-Min;Kim, Jung-Soo
    • International Journal of Railway
    • /
    • v.7 no.4
    • /
    • pp.100-108
    • /
    • 2014
  • A numerical analysis method for predicting aerodynamic noise at inter-coach space of high-speed trains, validated by wind-tunnel experiments for limited speed range, is proposed. The wind-tunnel testing measurements of the train aerodynamic sound pressure level for the new generation Korean high-speed train have suggested that the inter-coach space aerodynamic noise varies approximately to the 7.7th power of the train speed. The observed high sensitivity serves as a motivation for the present investigation on elucidating the characteristics of noise emission at inter-coach space. As train speed increases, the effect of turbulent flows and vortex shedding is amplified, with concomitant increase in the aerodynamic noise. The turbulent flow field analysis demonstrates that vortex formation indeed causes generation of aerodynamic sound. For validation, numerical simulation and wind tunnel measurements are performed under identical conditions. The results show close correlation between the numerically derived and measured values, and with some adjustment, the results are found to be in good agreement. Thus validated, the numerical analysis procedure is applied to predict the aerodynamic noise level at inter-coach space. As the train gains speed, numerical simulation predicts increase in the overall aerodynamic sound emission level accompanied by an upward shift in the main frequency components of the sound. A contour mapping of the aerodynamic sound for the region enclosing the inter-coach space is presented.

Dynamic analysis of KTX running characteristics (KTX 주행특성 해석)

  • Kang Bu-Byoung;Chung Heung-Chai;Kim Jae-Chul;Goo Dong-Hoe
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.718-723
    • /
    • 2003
  • The acceptance test of KTX has been performed in Korea. During the test lateral vibration of carbody over the accepted value called sway was found. Many activities have been taken to find the cause of the vibration and the counter-measure. KTX has 20 car trainset formation whose trailer cars are linked by articulate bogies. So this study is performed to see the effects of long trainset formation on vehicle dynamics and the train stability by 16 car vehicle model. Firstly the reliable vehicle model which shows well the tendencies appeared in the tests on the high speed test line is required to find the cause of lateral vibration and the countermeasure. Vehicle model was made for the analysis with VAMPIRE. The analysis results show that secondary air spring lateral stiffness is the most significant parameter to cause carbody lateral vibration. Mode analysis results show that the least damped mode shape is similar to the vibration pattern shown in the tests that the amplitude of the motion increases along the train set and decreases in the tail part. The lateral vibration was appeared at the speed range between 100km/h and 200km/h and disappeared at the low speed and the high speed.

  • PDF

A Study on the Change of Energy Consumption and Transport Capacity Depending upon the Train Operation Mixing Slow Trains and Fast Trains (급행.완행 결합 운행에 따른 수송량 및 소비 에너지의 변화)

  • Yang, Kyeong-Rok;Kim, Jae-Hwan;Jin, In-Su;Ryu, Hyung-Sun;Kim, Si-Ku;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1448-1450
    • /
    • 2000
  • The train system in a big city has the serious problem of the shortage of transport capacity. And because of the nowaday energy crisis, the research to reduce the energy consumption in the train system has been progressed. In this paper, it is expected that the train operation mixing slow trains and fast trains enable us to increase transport capacity and to reduce energy consumption. In this paper, the train operation mixing slew trains and fast trains is modelled and the change of energy consumption and transport capacity depending upon the operation formation is simulated.

  • PDF

Numerical investigation of the influence of structures in bogie area on the wake of a high-speed train

  • Wang, Dongwei;Chen, Chunjun;He, Zhiying
    • Wind and Structures
    • /
    • v.34 no.5
    • /
    • pp.451-467
    • /
    • 2022
  • The flow around a high-speed train with three underbody structures in the bogie area is numerically investigated using the improved delayed detached eddy simulation method. The vortex structure, pressure distribution, flow field structure, and unsteady velocity of the wake are analyzed by vortex identification criteria Q, frequency spectral analysis, empirical mode decomposition (EMD), and Hilbert spectral analysis. The results show that the structures of the bogie and its installation cabin reduce the momentum of fluid near the tail car, thus it is easy to induce flow separation and make the fluid no longer adhere to the side surface of the train, then forming vortices. Under the action of the vortices on the side of the tail car, the wake vortices have a trend of spanwise motion. But the deflector structure can prevent the separation on the side of the tail car. Besides, the bogie fairings do not affect the formation process and mechanism of the wake vortices, but the fairings prevent the low-speed fluid in the bogie installation cabin from flowing to the side of the train and reduce the number of the vortices in the wake region.

The Research on the Adequacy of Urban Trainset - focus the Jung-ang Line for Urban - (도시철도 열차편성의 적정성에 관한 연구 - 광역전철 중앙선을 중심으로 -)

  • Jung, Ye-Seoung;Kim, Moon-Hong
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.626-631
    • /
    • 2007
  • With its critical pending task of putting the management into the right track, it is extremely important for the Korea Railroad Corporation to incorporate more reasonable distribution into train consists to cut down its operation costs and attain higher income surplus in the Metropolitan Train Business. Furthermore, for Jung-ang Line soon to be operated without any crew on-board, more adequate train formation looks very indispensable mainly to satisfy transportation demands as well as enhance the passenger safety. This paper will examine the Jung-ang Line with hourly-basis congestions and inter station O/Ds to get the better operation schedules and trainset numbers.

  • PDF

Design and Performance Study of Propulsion System for Korean High Speed Train (한국형 고속전철의 추진시스템 설계 및 성능 연구)

  • 박광복;김현철
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.349-358
    • /
    • 1998
  • This study was carried out about the design and the performance study of propulsion system for Korean High Speed Train of maximum operating speed of 350km/h. The propulsion system was studied to two parts the formation of power transmission and the performance of traction system base on Korean-TGV. For maximum operating speed of 350km/h at Seoul-Pusan high speed line, the power of train should be have the remaining acceleration of 0.058m/s/s and the slopeability of 6%o. This performance study of propulsion system would be continued for defining of adhesion factor, friction factor and aerodynamic factor assumed to analysis and simulation.

  • PDF