Browse > Article
http://dx.doi.org/10.12989/was.2022.34.5.451

Numerical investigation of the influence of structures in bogie area on the wake of a high-speed train  

Wang, Dongwei (School of Mechanical Engineering, Southwest Jiaotong University)
Chen, Chunjun (School of Mechanical Engineering, Southwest Jiaotong University)
He, Zhiying (School of Mechanical Engineering, Southwest Jiaotong University)
Publication Information
Wind and Structures / v.34, no.5, 2022 , pp. 451-467 More about this Journal
Abstract
The flow around a high-speed train with three underbody structures in the bogie area is numerically investigated using the improved delayed detached eddy simulation method. The vortex structure, pressure distribution, flow field structure, and unsteady velocity of the wake are analyzed by vortex identification criteria Q, frequency spectral analysis, empirical mode decomposition (EMD), and Hilbert spectral analysis. The results show that the structures of the bogie and its installation cabin reduce the momentum of fluid near the tail car, thus it is easy to induce flow separation and make the fluid no longer adhere to the side surface of the train, then forming vortices. Under the action of the vortices on the side of the tail car, the wake vortices have a trend of spanwise motion. But the deflector structure can prevent the separation on the side of the tail car. Besides, the bogie fairings do not affect the formation process and mechanism of the wake vortices, but the fairings prevent the low-speed fluid in the bogie installation cabin from flowing to the side of the train and reduce the number of the vortices in the wake region.
Keywords
bogie; EMD; high-speed train; improved delayed detached eddy simulation; wake;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Liu, W., Guo, D., Zhang, Z., Chen, D. and Yang, G. (2019), "Effects of bogies on the wake flow of a high-speed train", Appl. Sci.-Basel., 9(4), 759. https://doi.org/10.3390/app9040759.   DOI
2 Mandic, D.P., Rehman, N.U., Wu, Z. and Huang, N.E. (2013), "Empirical mode decomposition-based time-frequency analysis of multivariate signals: the power of adaptive data analysis", IEEE Signal Process. Mag. 30, 74-86. https://doi.org/10.1109/MSP.2013.2267931.   DOI
3 Jeong, J. and Hussain, F. (1995), "On the identification of a vortex", J. Fluid Mech. 285(4), 69-94. https://doi.org/10.1017/S0022112095000462.   DOI
4 Pope, C.W. (2007), "Effective management of risk from slipstream effects at trackside and platforms", Rail Safety Standards Board-T425 Report.
5 Spalart, P.R. (2000), "Strategies for turbulence modelling and simulations", Int. J. Heat Fluid Flow. 21, 252-263. https://doi.org/10.1016/B978-008043328-8/50001-1.   DOI
6 Wang, J., Gao, G., Li, X., Liang, X. and Zhang, J. (2020a), "Effect of bogie fairings on the flow behaviours and aerodynamic performance of a high-speed train", Veh. Syst. Dyn. 58, 890-910. https://doi.org/10.1080/00423114.2019.1607400.   DOI
7 Wang, S., Burton, D., Herbst, A., Sheridan, J. and Thompson, M.C. (2018b), "The effect of bogies on high-speed train slipstream and wake", J. Fluids Struct. 83, 471-489. https://doi.org/10.1016/j.jfluidstructs.2018.03.013.   DOI
8 Xiao, Z., Liu, J., Luo, K., Huang, J. and Fu, S. (2013), "Investigation of flows around a rudimentary landing gear with advanced detached-eddy-simulation approaches", AIAA J. 51(1), 107-125. https://doi.org/10.2514/1.J051598.   DOI
9 Zhou, Z., Xia, C., Shan, X., and Yang, Z. (2020), "The impact of bogie sections on the wake dynamics of a high-speed train", Flow Turbul. Combust. 104, 89-113. https://doi.org/10.1007/s10494-019-00052-w.   DOI
10 Osth, J., Kaiser, E., Krajnovic, S. and Noack, B.R. (2015), "Cluster-based reduced-order modelling of the flow in the wake of a high speed train", J. Wind Eng. Ind. Aerod., 145, 327-338. https://doi.org/10.1016/j.jweia.2015.06.003.   DOI
11 Bell, J.R., Burton, D., Thompson, M.C., Herbst, A.H., Sheridan, J. (2015), "Moving model analysis of the slipstream and wake of a high-speed train". J. Wind Eng. Ind. Aerod., 136, 127-137. https://doi.org/10.1016/j.jweia.2014.09.007.   DOI
12 Muld, T.W., Efraimsson, G. and Henningson, D.S. (2014), "Wake characteristics of high-speed trains with different lengths", Proc. Inst. Mech. Eng. Part F-J. Rail Rapid Transit., 228, 333-342. https://doi.org/10.1177/0954409712473922.   DOI
13 Niu, J.Q., Zhou, D. and Liang, X.F. (2017), "Experimental research on the aerodynamic characteristics of a high-speed train under different turbulence conditions", Experiment. Thermal Fluid Sci., 80, 117-125. https://doi.org/10.1016/j.expthermflusci.2016.08.014.   DOI
14 Gao, G., Li, F., He, K., Wang, J., Zhang, J. and Miao, X. (2019), "Investigation of bogie positions on the aerodynamic drag and near wake structure of a high-speed train", J. Wind Eng. Ind. Aerod., 185, 41-53. https://doi.org/10.1016/j.jweia.2018.10.012.   DOI
15 Raghunathan, R.S., Kim, H.D. and Setoguchi, T. (2002), "Aerodynamics of high-speed railway train", Prog. Aeosp. Sci., 38(6), 469-514. https://doi.org/10.1016/S0376-0421(02)00029-5.   DOI
16 Hunt, J.C.R, Wray, A.A. and Moin P. (1988), "Eddies, streams, and convergence zones in turbulent flows", Center for Turbulence Research Proceedings of the Summer Program. 193-208.
17 Bell, J.R., Burton, D., Thompson, M.C., Herbst, A.H. and Sheridan, J. (2017a), "The effect of tail geometry on the slipstream and unsteady wake structure of high-speed trains", Exp. Therm. Fluid Sci., 83, 215-230. https://doi.org/10.1016/j.expthermflusci.2017.01.014.   DOI
18 Bell, J.R., Burton, D., Thompson, M.C., Herbst, A.H. and Sheridan, J. (2017b), "A wind-tunnel methodology for assessing the slipstream of high-speed trains". J. Wind Eng. Ind. Aerod., 166, 1-19. https://doi.org/10.1016/j.jweia.2017.03.012.   DOI
19 CEN European Standard (2013), Railway Applications-Aerodynamics. Part 4: Requirements and Test Procedures for Aerodynamics on Open Track, CEN EN 14067-4.
20 Chong, M.S., Perry, A.E. and Cantwell, B.J. (1990), "A general classification of three-dimensional flow fields", Phys. Fluids A. 2(5), 765-777. https://doi.org/10.1063/1.857730.   DOI
21 Guo, D., Shang, K., Zhang, Y., Yang, G. and Sun, Z. (2016), "Influences of affiliated components and train length on the train wind", Acta Mech. Sin., 32, 191-205. https://doi.org/10.1007/s10409-015-0553-z.   DOI
22 Huang, N.E, Shen, Z. and Long, S.R. (1999), "A new view of nonlinear water waves: the Hilbert spectrum", Annu Rev Fluid Mech., 31, 417-457. https://doi.org/10.1146/annurev.fluid.31.1.417.   DOI
23 Wang, D., Chen, C., Hu, J. and He, Z. (2020b), "The effect of Reynolds number on the unsteady wake of a high-speed train", J. Wind Eng. Ind. Aerod., 204, 104223. https://doi.org/10.1016/j.jweia.2020.104223.   DOI
24 Huang, N.E., Shen, Z. and Long, S.R. (1998), "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis", Proceedings of Royal Society. 44, 903-995. https://doi.org/10.1098/rspa.1998.0193.   DOI
25 Bell, J.R., Burton, D., Thompson, M., Herbst, A. and Sheridan, J. (2014), "Wind tunnel analysis of the slipstream and wake of a high-speed train". J. Wind Eng. Ind. Aerod., 134, 122-138. https://doi.org/10.1016/j.jweia.2014.09.004.   DOI
26 Muld, T.W., Efraimsson, G. and Henningson, D.S. (2012), "Flow structures around a high-speed train extracted using Proper Orthogonal Decomposition and Dynamic Mode Decomposition", Comput. Fluids. 57, 87-97. https://doi.org/10.1016/j.compfluid.2011.12.012.   DOI
27 Baker, C. (2010), "The flow around high speed trains", J. Wind Eng. Ind. Aerod. 98, 277-298. https://doi.org/10.1016/j.jweia.2009.11.002.   DOI
28 Wang, S., Burton, D., Herbst, A.H., Sheridan, J. and Thompson, M.C. (2018a), "The effect of the ground condition on high-speed train slipstream", J. Wind Eng. Ind. Aerod., 172, 230-243. https://doi.org/10.1016/j.jweia.2017.11.009.   DOI
29 Bell, J.R., Burton, D., Thompson, M.C., Herbst, A.H. and Sheridan, J. (2016a), "Flow topology and unsteady features of the wake of a generic high-speed train", J. Fluids Struct., 61, 168-183. https://doi.org/10.1016/j.jfluidstructs.2015.11.009.   DOI
30 Spalart, P.R. (2009), "Detached-Eddy Simulation", Annu. Rev. Fluid Mech., 41, 181-202. https://doi.org/10.1146/annurev.fluid.010908.165130.   DOI
31 Wang, J., Minelli, G., Dong, T., Chen, G. and Krajnovic, S. (2019), "The effect of bogie fairings on the slipstream and wake flow of a high-speed train. An IDDES study", J. Wind Eng. Ind. Aerod., 191, 183-202. https://doi.org/10.1016/j.jweia.2019.06.010.   DOI
32 Wang, S., Bell, J.R., Burton, D., Herbst, A.H., Sheridan, J. and Thompson, M.C. (2017), "The performance of different turbulence models (URANS, SAS and DES) for predicting high-speed train slipstream", J. Wind Eng. Ind. Aerod., 165, 46-57. https://doi.org/10.1016/j.jweia.2017.03.001.   DOI
33 Yao, S.B., Sun, Z.X., Guo, D.L., Chen, D.W., andYang, G.W. (2013), "Numerical study on wake characteristics of high-speed trains", Sinica Acta Mech. Sin. 29, 811-822. https://doi.org/10.1007/s10409-013-0077-3.   DOI
34 Bell, J.R., Burton, D., Thompson, M.C., Herbst, A.H. and Sheridan, J. (2016b), "Dynamics of trailing vortices in the wake of a generic high-speed train", J. Fluids Struct., 65, 238-256. https://doi.org/10.1016/j.jfluidstructs.2016.06.003.   DOI
35 Xia, C., Wang, H., Shan, X., Yang, Z. and Li, Q. (2017), "Effects of ground configurations on the slipstream and near wake of a high-speed train", J. Wind Eng. Ind. Aerod., 168, 177-189. https://doi.org/10.1016/j.jweia.2017.06.005.   DOI
36 Yao, S.B., Guo, D.L., Sun, Z.X., Yang, G.W. and Chen, D.W. (2014), "Optimization design for aerodynamic elements of high speed trains", Comput. Fluids. 95, 56-73. https://doi.org/10.1016/j.compfluid.2014.02.018.   DOI